↓ Skip to main content

The EU-AIMS Longitudinal European Autism Project (LEAP): design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders

Overview of attention for article published in Molecular Autism, June 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

blogs
1 blog
twitter
17 X users
patent
1 patent

Citations

dimensions_citation
197 Dimensions

Readers on

mendeley
453 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The EU-AIMS Longitudinal European Autism Project (LEAP): design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders
Published in
Molecular Autism, June 2017
DOI 10.1186/s13229-017-0146-8
Pubmed ID
Authors

Eva Loth, Tony Charman, Luke Mason, Julian Tillmann, Emily J. H. Jones, Caroline Wooldridge, Jumana Ahmad, Bonnie Auyeung, Claudia Brogna, Sara Ambrosino, Tobias Banaschewski, Simon Baron-Cohen, Sarah Baumeister, Christian Beckmann, Michael Brammer, Daniel Brandeis, Sven Bölte, Thomas Bourgeron, Carsten Bours, Yvette de Bruijn, Bhismadev Chakrabarti, Daisy Crawley, Ineke Cornelissen, Flavio Dell’ Acqua, Guillaume Dumas, Sarah Durston, Christine Ecker, Jessica Faulkner, Vincent Frouin, Pilar Garces, David Goyard, Hannah Hayward, Lindsay M. Ham, Joerg Hipp, Rosemary J. Holt, Mark H. Johnson, Johan Isaksson, Prantik Kundu, Meng-Chuan Lai, Xavier Liogier D’ardhuy, Michael V. Lombardo, David J. Lythgoe, René Mandl, Andreas Meyer-Lindenberg, Carolin Moessnang, Nico Mueller, Laurence O’Dwyer, Marianne Oldehinkel, Bob Oranje, Gahan Pandina, Antonio M. Persico, Amber N. V. Ruigrok, Barbara Ruggeri, Jessica Sabet, Roberto Sacco, Antonia San José Cáceres, Emily Simonoff, Roberto Toro, Heike Tost, Jack Waldman, Steve C. R. Williams, Marcel P. Zwiers, Will Spooren, Declan G. M. Murphy, Jan K. Buitelaar

Abstract

The tremendous clinical and aetiological diversity among individuals with autism spectrum disorder (ASD) has been a major obstacle to the development of new treatments, as many may only be effective in particular subgroups. Precision medicine approaches aim to overcome this challenge by combining pathophysiologically based treatments with stratification biomarkers that predict which treatment may be most beneficial for particular individuals. However, so far, we have no single validated stratification biomarker for ASD. This may be due to the fact that most research studies primarily have focused on the identification of mean case-control differences, rather than within-group variability, and included small samples that were underpowered for stratification approaches. The EU-AIMS Longitudinal European Autism Project (LEAP) is to date the largest multi-centre, multi-disciplinary observational study worldwide that aims to identify and validate stratification biomarkers for ASD. LEAP includes 437 children and adults with ASD and 300 individuals with typical development or mild intellectual disability. Using an accelerated longitudinal design, each participant is comprehensively characterised in terms of clinical symptoms, comorbidities, functional outcomes, neurocognitive profile, brain structure and function, biochemical markers and genomics. In addition, 51 twin-pairs (of which 36 had one sibling with ASD) are included to identify genetic and environmental factors in phenotypic variability. Here, we describe the demographic characteristics of the cohort, planned analytic stratification approaches, criteria and steps to validate candidate stratification markers, pre-registration procedures to increase transparency, standardisation and data robustness across all analyses, and share some 'lessons learnt'. A clinical characterisation of the cohort is given in the companion paper (Charman et al., accepted). We expect that LEAP will enable us to confirm, reject and refine current hypotheses of neurocognitive/neurobiological abnormalities, identify biologically and clinically meaningful ASD subgroups, and help us map phenotypic heterogeneity to different aetiologies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 17 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 453 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 453 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 64 14%
Student > Ph. D. Student 58 13%
Researcher 52 11%
Student > Bachelor 39 9%
Other 27 6%
Other 81 18%
Unknown 132 29%
Readers by discipline Count As %
Psychology 94 21%
Neuroscience 79 17%
Medicine and Dentistry 37 8%
Social Sciences 20 4%
Computer Science 14 3%
Other 63 14%
Unknown 146 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 21. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 October 2020.
All research outputs
#1,829,846
of 25,654,806 outputs
Outputs from Molecular Autism
#172
of 722 outputs
Outputs of similar age
#34,845
of 330,103 outputs
Outputs of similar age from Molecular Autism
#2
of 22 outputs
Altmetric has tracked 25,654,806 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 722 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.7. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,103 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.