↓ Skip to main content

Identification of G-quadruplex structures that possess transcriptional regulating functions in the Dele and Cdc6 CpG islands

Overview of attention for article published in BMC Molecular and Cell Biology, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of G-quadruplex structures that possess transcriptional regulating functions in the Dele and Cdc6 CpG islands
Published in
BMC Molecular and Cell Biology, June 2017
DOI 10.1186/s12867-017-0094-z
Pubmed ID
Authors

Daniyah H. Bay, Annika Busch, Fred Lisdat, Keisuke Iida, Kazunori Ikebukuro, Kazuo Nagasawa, Isao Karube, Wataru Yoshida

Abstract

G-quadruplex is a DNA secondary structure that has been shown to play an important role in biological systems. In a previous study, we identified 1998 G-quadruplex-forming sequences using a mouse CpG islands DNA microarray with a fluorescent-labeled G-quadruplex ligand. Among these putative G-quadruplex-forming sequences, G-quadruplex formation was verified for 10 randomly selected sequences by CD spectroscopy and DMS footprinting analysis. In this study, the biological function of the 10 G-quadruplex-forming sequences in the transcriptional regulation has been analyzed using a reporter assay. When G-quadruplex-forming sequences from the Dele and Cdc6 genes have been cloned in reporter vectors carrying a minimal promoter and the luciferase gene, luciferase expression is activated. This has also been detected in experiments applying a promoterless reporter vector. Mutational analysis reveals that guanine bases, which form the G-tetrads, are important in the activation. In addition, the activation has been found to decrease by the telomestatin derivative L1H1-7OTD which can bind to the G-quadruplex DNA. When Dele and Cdc6 CpG islands, containing the G-quadruplex-forming sequence, have been cloned in the promoterless reporter vector, the luciferase expression is activated. Mutational analysis reveals that the expression level is decreased by mutation on Dele G-quadruplex; however, increased by mutation on Cdc6 G-quadruplex. Dele and Cdc6 G-quadruplex formation is significant in the transcriptional regulation. Dele and Cdc6 G-quadruplex DNA alone possess enhancer and promotor function. When studied in more complex CpG islands Dele G-quadruplex also demonstrates promotor activity, whereas Cdc6 G-quadruplex may possess a dual function of transcriptional regulation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 21%
Student > Master 7 18%
Researcher 4 11%
Professor 3 8%
Student > Bachelor 2 5%
Other 6 16%
Unknown 8 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 45%
Chemistry 3 8%
Agricultural and Biological Sciences 3 8%
Unspecified 1 3%
Economics, Econometrics and Finance 1 3%
Other 1 3%
Unknown 12 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 April 2018.
All research outputs
#15,173,117
of 25,382,440 outputs
Outputs from BMC Molecular and Cell Biology
#668
of 1,233 outputs
Outputs of similar age
#171,950
of 328,322 outputs
Outputs of similar age from BMC Molecular and Cell Biology
#8
of 18 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,233 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,322 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.