↓ Skip to main content

A systems pharmacology-based approach to identify novel Kv1.3 channel-dependent mechanisms in microglial activation

Overview of attention for article published in Journal of Neuroinflammation, June 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

wikipedia
2 Wikipedia pages

Citations

dimensions_citation
52 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A systems pharmacology-based approach to identify novel Kv1.3 channel-dependent mechanisms in microglial activation
Published in
Journal of Neuroinflammation, June 2017
DOI 10.1186/s12974-017-0906-6
Pubmed ID
Authors

Srikant Rangaraju, Syed Ali Raza, Andrea Pennati, Qiudong Deng, Eric B. Dammer, Duc Duong, Michael W. Pennington, Malu G. Tansey, James J. Lah, Ranjita Betarbet, Nicholas T. Seyfried, Allan I. Levey

Abstract

Kv1.3 potassium channels regulate microglial functions and are overexpressed in neuroinflammatory diseases. Kv1.3 blockade may selectively inhibit pro-inflammatory microglia in neurological diseases but the molecular and cellular mechanisms regulated by Kv1.3 channels are poorly defined. We performed immunoblotting and flow cytometry to confirm Kv1.3 channel upregulation in lipopolysaccharide (LPS)-activated BV2 microglia and in brain mononuclear phagocytes freshly isolated from LPS-treated mice. Quantitative proteomics was performed on BV2 microglia treated with control, LPS, ShK-223 (highly selective Kv1.3 blocker), and LPS+ShK-223. Gene ontology (GO) analyses of Kv1.3-dependent LPS-regulated proteins were performed, and the most representative proteins and GO terms were validated. Effects of Kv1.3-blockade on LPS-activated BV2 microglia were studied in migration, focal adhesion formation, reactive oxygen species production, and phagocytosis assays. In vivo validation of protein changes and predicted molecular pathways were performed in a model of systemic LPS-induced neuroinflammation, employing antigen presentation and T cell proliferation assays. Informed by pathway analyses of proteomic data, additional mechanistic experiments were performed to identify early Kv1.3-dependent signaling and transcriptional events. LPS-upregulated cell surface Kv1.3 channels in BV2 microglia and in microglia and CNS-infiltrating macrophages isolated from LPS-treated mice. Of 144 proteins differentially regulated by LPS (of 3141 proteins), 21 proteins showed rectification by ShK-223. Enriched cellular processes included MHCI-mediated antigen presentation (TAP1, EHD1), cell motility, and focal adhesion formation. In vitro, ShK-223 decreased LPS-induced focal adhesion formation, reversed LPS-induced inhibition of migration, and inhibited LPS-induced upregulation of EHD1, a protein involved in MHCI trafficking. In vivo, intra-peritoneal ShK-223 inhibited LPS-induced MHCI expression by CD11b(+)CD45(low) microglia without affecting MHCI expression or trafficking of CD11b(+)CD45(high) macrophages. ShK-223 inhibited LPS-induced MHCI-restricted antigen presentation to ovalbumin-specific CD8(+) T cells both in vitro and in vivo. Kv1.3 co-localized with the LPS receptor complex and regulated LPS-induced early serine (S727) STAT1 phosphorylation. We have unraveled novel molecular and functional roles for Kv1.3 channels in pro-inflammatory microglial activation, including a Kv1.3 channel-regulated pathway that facilitates MHCI expression and MHCI-dependent antigen presentation by microglia to CD8(+) T cells. We also provide evidence for neuro-immunomodulation by systemically administered ShK peptides. Our results further strengthen the therapeutic candidacy of microglial Kv1.3 channels in neurologic diseases.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 18 29%
Student > Ph. D. Student 8 13%
Student > Bachelor 5 8%
Other 4 6%
Student > Master 4 6%
Other 10 16%
Unknown 13 21%
Readers by discipline Count As %
Neuroscience 17 27%
Biochemistry, Genetics and Molecular Biology 10 16%
Agricultural and Biological Sciences 9 15%
Medicine and Dentistry 7 11%
Nursing and Health Professions 2 3%
Other 4 6%
Unknown 13 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 June 2018.
All research outputs
#7,531,972
of 22,982,639 outputs
Outputs from Journal of Neuroinflammation
#1,221
of 2,653 outputs
Outputs of similar age
#120,453
of 315,536 outputs
Outputs of similar age from Journal of Neuroinflammation
#17
of 42 outputs
Altmetric has tracked 22,982,639 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,653 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,536 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.