↓ Skip to main content

Tissue perfusion modelling in optical coherence tomography

Overview of attention for article published in BioMedical Engineering OnLine, February 2017
Altmetric Badge

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tissue perfusion modelling in optical coherence tomography
Published in
BioMedical Engineering OnLine, February 2017
DOI 10.1186/s12938-017-0320-4
Pubmed ID
Authors

Petra Stohanzlova, Radim Kolar

Abstract

Optical coherence tomography (OCT) is a well established imaging technique with different applications in preclinical research and clinical practice. The main potential for its application lies in the possibility of noninvasively performing "optical biopsy". Nevertheless, functional OCT imaging is also developing, in which perfusion imaging is an important approach in tissue function study. In spite of its great potential in preclinical research, advanced perfusion imaging using OCT has not been studied. Perfusion analysis is based on administration of a contrast agent (nanoparticles in the case of OCT) into the bloodstream, where during time it specifically changes the image contrast. Through analysing the concentration-intensity curves we are then able to find out further information about the examined tissue. We have designed and manufactured a tissue mimicking phantom that provides the possibility of measuring dilution curves in OCT sequence with flow rates 200, 500, 1000 and 2000 μL/min. The methodology comprised of using bolus of 50 μL of gold nanorods as a contrast agent (with flow rate 5000 μL/min) and continuous imaging by an OCT system. After data acquisition, dilution curves were extracted from OCT intensity images and were subjected to a deconvolution method using an input-output system description. The aim of this was to obtain impulse response characteristics for our model phantom within the tissue mimicking environment. Four mathematical tissue models were used and compared: exponential, gamma, lagged and LDRW. We have shown that every model has a linearly dependent parameter on flow ([Formula: see text] values from 0.4914 to 0.9996). We have also shown that using different models can lead to a better understanding of the examined model or tissue. The lagged model surpassed other models in terms of the minimisation criterion and [Formula: see text] value. We used a tissue mimicking phantom in our study and showed that OCT can be used for advanced perfusion analysis using mathematical model and deconvolution approach. The lagged model with three parameters is the most appropriate model. Nevertheless, further research have to be performed, particularly with real tissue.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 20%
Student > Ph. D. Student 5 20%
Student > Doctoral Student 2 8%
Researcher 2 8%
Student > Master 2 8%
Other 3 12%
Unknown 6 24%
Readers by discipline Count As %
Engineering 7 28%
Medicine and Dentistry 5 20%
Physics and Astronomy 2 8%
Neuroscience 1 4%
Business, Management and Accounting 1 4%
Other 2 8%
Unknown 7 28%