↓ Skip to main content

Fixed-length haplotypes can improve genomic prediction accuracy in an admixed dairy cattle population

Overview of attention for article published in Genetics Selection Evolution, July 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fixed-length haplotypes can improve genomic prediction accuracy in an admixed dairy cattle population
Published in
Genetics Selection Evolution, July 2017
DOI 10.1186/s12711-017-0329-y
Pubmed ID
Authors

Melanie Hess, Tom Druet, Andrew Hess, Dorian Garrick

Abstract

Fitting covariates representing the number of haplotype alleles rather than single nucleotide polymorphism (SNP) alleles may increase genomic prediction accuracy if linkage disequilibrium between quantitative trait loci and SNPs is inadequate. The objectives of this study were to evaluate the accuracy, bias and computation time of Bayesian genomic prediction methods that fit fixed-length haplotypes or SNPs. Genotypes at 37,740 SNPs that were common to Illumina BovineSNP50 and high-density panels were phased for ~58,000 New Zealand dairy cattle. Females born before 1 June 2008 were used for training, and genomic predictions for milk fat yield (n = 24,823), liveweight (n = 13,283) and somatic cell score (n = 24,864) were validated within breed (predominantly Holstein-Friesian, predominantly Jersey, or admixed KiwiCross) in later-born females. Covariates for haplotype alleles of five lengths (125, 250, 500 kb, 1 or 2 Mb) were generated and rare haplotypes were removed at four thresholds (1, 2, 5 or 10%), resulting in 20 scenarios tested. Genomic predictions fitting covariates for either SNPs or haplotypes were calculated by using BayesA, BayesB or BayesN. This is the first study to quantify the accuracy of genomic prediction using haplotypes across the whole genome in an admixed population. A correlation of 0.349 ± 0.016 between yield deviation and genomic breeding values was obtained for milk fat yield in Holstein-Friesians using BayesA fitting covariates. Genomic predictions were more accurate with short haplotypes than with SNPs but less accurate with longer haplotypes than with SNPs. Fitting only the most frequent haplotype alleles reduced computation time with little decrease in prediction accuracy for short haplotypes. Trends were similar for all traits and breeds and there was little difference between Bayesian methods. Fitting covariates for haplotype alleles rather than SNPs can increase prediction accuracy, although it decreased drastically for long (>500 kb) haplotypes. In this population, fitting 250 kb haplotypes with a 1% frequency threshold resulted in the highest genomic prediction accuracy and fitting 125 kb haplotypes with a 10% frequency threshold improved genomic prediction accuracy with comparable computation time to fitting SNPs. This increased accuracy is likely to increase genetic gain by changing the ranking of selection candidates.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 72 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 22%
Student > Ph. D. Student 15 21%
Student > Master 6 8%
Student > Doctoral Student 5 7%
Professor 3 4%
Other 9 13%
Unknown 18 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 36 50%
Biochemistry, Genetics and Molecular Biology 8 11%
Unspecified 2 3%
Engineering 2 3%
Economics, Econometrics and Finance 1 1%
Other 3 4%
Unknown 20 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 July 2017.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from Genetics Selection Evolution
#640
of 821 outputs
Outputs of similar age
#236,811
of 326,157 outputs
Outputs of similar age from Genetics Selection Evolution
#10
of 12 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 821 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,157 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.