↓ Skip to main content

CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model

Overview of attention for article published in Journal of Experimental & Clinical Cancer Research, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
66 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model
Published in
Journal of Experimental & Clinical Cancer Research, June 2017
DOI 10.1186/s13046-017-0561-x
Pubmed ID
Authors

Ruisong Ye, Min Pi, John V. Cox, Satoru K. Nishimoto, L. Darryl Quarles

Abstract

GPRC6A is implicated in the pathogenesis of prostate cancer, but its role remains uncertain because of a purported tolerant gene variant created by substitution of a K..Y polymorphism in the 3rd intracellular loop (IL) that evolved in the majority of humans and replaces the ancestral RKLP present in 40% of humans of African descent and all other species. We determined whether the K..Y polymorphism is present in human-derived prostate cancer cell lines by sequencing the region of the 3rd IL and assessed the cellular localization of a "humanized" mouse GPRC6A containing the K..Y sequence by immunofluorescence. We assessed functions of GPRC6A in PC-3 cells expressing endogenous GPRC6A and in GPRC6A-deficient PC-3 cells created using CRISPR/Cas9 technology. The effect of GPRC6A on basal and ligand stimulated cell proliferation and migration was evaluated in vitro in wild-type and PC-3-deficient cell lines. The effect of editing GPRC6A on prostate cancer growth and progression in vivo was assessed in a Xenograft mouse model implanted with wild-type and PC-3 deficient cells and treated with the GPRC6A ligand osteocalcin. We found that all of the human prostate cancer cell lines tested endogenously express the "K..Y" polymorphism in the 3rd IL. Comparison of mouse wild-type GPRC6A with a "humanized" mouse GPRC6A construct created by replacing the "RKLP" with the "K..Y" sequence, found that both receptors were predominantly expressed on the cell surface. The transfected "humanized" GPRC6A receptor, however, preferentially activated mTOR compared to ERK signaling in HEK-293 cells. In contrast, in PC-3 cells expressing the endogenous GPRC6A with the "K..Y" polymorphism, the ligand osteocalcin stimulated ERK, AKT and mTOR phosphorylation, promoted cell proliferation and migration, and upregulated genes regulating testosterone biosynthesis. Targeting GPRC6A in PC-3 cells by CRISPR/Cas9 significantly blocked these responses in vitro. In addition, GPRC6A deficient PC-3 xenografts exhibited significantly less growth and were resistant to osteocalcin-induced prostate cancer progression compared to control PC-3 cells expressing GPRC6A. Human GPRC6A is a functional osteocalcin and testosterone sensing receptor that promotes prostate cancer progression. GPRC6A may contribute to racial disparities in prostate cancer, and is a potential therapeutic target to develop antagonists to treat prostate cancer.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 66 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 13 20%
Student > Master 12 18%
Student > Ph. D. Student 7 11%
Student > Postgraduate 4 6%
Other 4 6%
Other 10 15%
Unknown 16 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 25 38%
Agricultural and Biological Sciences 10 15%
Medicine and Dentistry 4 6%
Nursing and Health Professions 2 3%
Immunology and Microbiology 2 3%
Other 5 8%
Unknown 18 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 April 2018.
All research outputs
#16,725,651
of 25,382,440 outputs
Outputs from Journal of Experimental & Clinical Cancer Research
#1,121
of 2,380 outputs
Outputs of similar age
#199,668
of 328,389 outputs
Outputs of similar age from Journal of Experimental & Clinical Cancer Research
#8
of 23 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,380 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,389 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.