↓ Skip to main content

MicroRNA-101a regulates microglial morphology and inflammation

Overview of attention for article published in Journal of Neuroinflammation, May 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MicroRNA-101a regulates microglial morphology and inflammation
Published in
Journal of Neuroinflammation, May 2017
DOI 10.1186/s12974-017-0884-8
Pubmed ID
Authors

Reiko Saika, Hiroshi Sakuma, Daisuke Noto, Shuhei Yamaguchi, Takashi Yamamura, Sachiko Miyake

Abstract

Microglia, as well as other tissue-resident macrophages, arise from yolk sac progenitors. Thus, it is likely that the central nervous system environment is critical for the acquisition of a distinct microglial phenotype. Several microRNAs that are enriched in the brain play crucial roles in brain development and may also play a role in the differentiation of microglia. To track the differentiation of hematopoietic cells into microglia, lineage-negative bone marrow cells were co-cultured with astrocytes in the absence or presence of microRNAs or their inhibitors. Microglia-like cells were identified as small, round cells that were immunopositive for CD11b, Iba1, CX3CR1, and triggering receptor expressed on myeloid cells (TREM)-2. Five microRNAs (miR-101a, miR-139-3p, miR-214(*), miR-218, and miR-1186) were identified as modifiers of the differentiation of bone marrow-derived microglia-like cells. Among them, miR-101a facilitated the differentiation of bone marrow cells into microglia-like cells most potently. Small, round cells expressing CD11b, Iba1, CX3CR1, and TREM-2 were predominant in cells treated by miR-101a. miR-101a was abundantly expressed in non-microglial brain cells. Transfection of miR-101a into microglia significantly increased the production of IL-6 in response to LPS. Finally, miR-101a downregulated the expression of MAPK phosphatase-1. miR-101a, which is enriched in the brain, promotes the differentiation of bone marrow cells into microglia-like cells.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 18%
Student > Ph. D. Student 7 16%
Student > Bachelor 7 16%
Student > Master 7 16%
Student > Postgraduate 4 9%
Other 8 18%
Unknown 4 9%
Readers by discipline Count As %
Neuroscience 14 31%
Medicine and Dentistry 7 16%
Agricultural and Biological Sciences 6 13%
Biochemistry, Genetics and Molecular Biology 5 11%
Immunology and Microbiology 3 7%
Other 5 11%
Unknown 5 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 July 2017.
All research outputs
#18,558,284
of 22,985,065 outputs
Outputs from Journal of Neuroinflammation
#2,081
of 2,653 outputs
Outputs of similar age
#241,104
of 316,100 outputs
Outputs of similar age from Journal of Neuroinflammation
#35
of 44 outputs
Altmetric has tracked 22,985,065 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,653 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,100 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.