↓ Skip to main content

Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum

Overview of attention for article published in BMC Plant Biology, July 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (63rd percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum
Published in
BMC Plant Biology, July 2017
DOI 10.1186/s12870-017-1064-9
Pubmed ID
Authors

Malleswari Gelli, Anji Reddy Konda, Kan Liu, Chi Zhang, Thomas E. Clemente, David R. Holding, Ismail M. Dweikat

Abstract

Quantitative trait loci (QTLs) detected in one mapping population may not be detected in other mapping populations at all the time. Therefore, before being used for marker assisted breeding, QTLs need to be validated in different environments and/or genetic backgrounds to rule out statistical anomalies. In this regard, we mapped the QTLs controlling various agronomic traits in a recombinant inbred line (RIL) population in response to Nitrogen (N) stress and validated these with the reported QTLs in our earlier study to find the stable and consistent QTLs across populations. Also, with Illumina RNA-sequencing we checked the differential expression of gene (DEG) transcripts between parents and pools of RILs with high and low nitrogen use efficiency (NUE) and overlaid these DEGs on to the common validated QTLs to find candidate genes associated with N-stress tolerance in sorghum. An F7 RIL population derived from a cross between CK60 (N-stress sensitive) and San Chi San (N-stress tolerant) inbred sorghum lines was used to map QTLs for 11 agronomic traits tested under different N-levels. Composite interval mapping analysis detected a total of 32 QTLs for 11 agronomic traits. Validation of these QTLs revealed that of the detected, nine QTLs from this population were consistent with the reported QTLs in earlier study using CK60/China17 RIL population. The validated QTLs were located on chromosomes 1, 6, 7, 8, and 9. In addition, root transcriptomic profiling detected 55 and 20 differentially expressed gene (DEG) transcripts between parents and pools of RILs with high and low NUE respectively. Also, overlay of these DEG transcripts on to the validated QTLs found candidate genes transcripts for NUE and also showed the expected differential expression. For example, DEG transcripts encoding Lysine histidine transporter 1 (LHT1) had abundant expression in San Chi San and the tolerant RIL pool, whereas DEG transcripts encoding seed storage albumin, transcription factor IIIC (TFIIIC) and dwarfing gene (DW2) encoding multidrug resistance-associated protein-9 homolog showed abundant expression in CK60 parent, similar to earlier study. The validated QTLs among different mapping populations would be the most reliable and stable QTLs across germplasm. The DEG transcripts found in the validated QTL regions will serve as future candidate genes for enhancing NUE in sorghum using molecular approaches.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 71 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 28%
Researcher 11 15%
Student > Master 8 11%
Student > Doctoral Student 7 10%
Student > Postgraduate 3 4%
Other 4 6%
Unknown 18 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 42 59%
Biochemistry, Genetics and Molecular Biology 6 8%
Chemical Engineering 1 1%
Computer Science 1 1%
Social Sciences 1 1%
Other 1 1%
Unknown 19 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 August 2017.
All research outputs
#7,197,689
of 22,988,380 outputs
Outputs from BMC Plant Biology
#574
of 3,280 outputs
Outputs of similar age
#113,190
of 312,560 outputs
Outputs of similar age from BMC Plant Biology
#5
of 39 outputs
Altmetric has tracked 22,988,380 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 3,280 research outputs from this source. They receive a mean Attention Score of 3.0. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,560 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.