↓ Skip to main content

Accounting for treatment use when validating a prognostic model: a simulation study

Overview of attention for article published in BMC Medical Research Methodology, July 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
16 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Accounting for treatment use when validating a prognostic model: a simulation study
Published in
BMC Medical Research Methodology, July 2017
DOI 10.1186/s12874-017-0375-8
Pubmed ID
Authors

Romin Pajouheshnia, Linda M. Peelen, Karel G. M. Moons, Johannes B. Reitsma, Rolf H. H. Groenwold

Abstract

Prognostic models often show poor performance when applied to independent validation data sets. We illustrate how treatment use in a validation set can affect measures of model performance and present the uses and limitations of available analytical methods to account for this using simulated data. We outline how the use of risk-lowering treatments in a validation set can lead to an apparent overestimation of risk by a prognostic model that was developed in a treatment-naïve cohort to make predictions of risk without treatment. Potential methods to correct for the effects of treatment use when testing or validating a prognostic model are discussed from a theoretical perspective.. Subsequently, we assess, in simulated data sets, the impact of excluding treated individuals and the use of inverse probability weighting (IPW) on the estimated model discrimination (c-index) and calibration (observed:expected ratio and calibration plots) in scenarios with different patterns and effects of treatment use. Ignoring the use of effective treatments in a validation data set leads to poorer model discrimination and calibration than would be observed in the untreated target population for the model. Excluding treated individuals provided correct estimates of model performance only when treatment was randomly allocated, although this reduced the precision of the estimates. IPW followed by exclusion of the treated individuals provided correct estimates of model performance in data sets where treatment use was either random or moderately associated with an individual's risk when the assumptions of IPW were met, but yielded incorrect estimates in the presence of non-positivity or an unobserved confounder. When validating a prognostic model developed to make predictions of risk without treatment, treatment use in the validation set can bias estimates of the performance of the model in future targeted individuals, and should not be ignored. When treatment use is random, treated individuals can be excluded from the analysis. When treatment use is non-random, IPW followed by the exclusion of treated individuals is recommended, however, this method is sensitive to violations of its assumptions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 16 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 23%
Researcher 8 23%
Student > Master 4 11%
Student > Bachelor 3 9%
Professor 2 6%
Other 4 11%
Unknown 6 17%
Readers by discipline Count As %
Medicine and Dentistry 13 37%
Mathematics 5 14%
Engineering 2 6%
Social Sciences 2 6%
Business, Management and Accounting 1 3%
Other 3 9%
Unknown 9 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 January 2023.
All research outputs
#3,327,462
of 23,549,388 outputs
Outputs from BMC Medical Research Methodology
#523
of 2,078 outputs
Outputs of similar age
#61,291
of 313,613 outputs
Outputs of similar age from BMC Medical Research Methodology
#10
of 40 outputs
Altmetric has tracked 23,549,388 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,078 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.2. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,613 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.