↓ Skip to main content

Genes and pathways underlying susceptibility to impaired lung function in the context of environmental tobacco smoke exposure

Overview of attention for article published in Respiratory Research, July 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
7 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genes and pathways underlying susceptibility to impaired lung function in the context of environmental tobacco smoke exposure
Published in
Respiratory Research, July 2017
DOI 10.1186/s12931-017-0625-7
Pubmed ID
Authors

K. de Jong, J.M. Vonk, M. Imboden, L. Lahousse, A. Hofman, G.G. Brusselle, N.M. Probst-Hensch, D.S. Postma, H.M. Boezen

Abstract

Studies aiming to assess genetic susceptibility for impaired lung function levels upon exposure to environmental tobacco smoke (ETS) have thus far focused on candidate-genes selected based on a-priori knowledge of potentially relevant biological pathways, such as glutathione S-transferases and ADAM33. By using a hypothesis-free approach, we aimed to identify novel susceptibility loci, and additionally explored biological pathways potentially underlying this susceptibility to impaired lung function in the context of ETS exposure. Genome-wide interactions of single nucleotide polymorphism (SNP) by ETS exposure (0 versus ≥1 h/day) in relation to the level of forced expiratory volume in one second (FEV1) were investigated in 10,817 subjects from the Dutch LifeLines cohort study, and verified in subjects from the Swiss SAPALDIA study (n = 1276) and the Dutch Rotterdam Study (n = 1156). SNP-by-ETS exposure p-values obtained from the identification analysis were used to perform a pathway analysis. Fourty Five SNP-by-ETS exposure interactions with p-values <10(-4) were identified in the LifeLines study, two being replicated with nominally significant p-values (<0.05) in at least one of the replication cohorts. Three pathways were enriched in the pathway-level analysis performed in the identification cohort LifeLines, i.E. the apoptosis, p38 MAPK and TNF pathways. This unique, first genome-wide gene-by-ETS interaction study on the level of FEV1 showed that pathways previously implicated in chronic obstructive pulmonary disease (COPD), a disease characterized by airflow obstruction, may also underlie susceptibility to impaired lung function in the context of ETS exposure.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 16%
Student > Master 5 10%
Student > Doctoral Student 4 8%
Student > Postgraduate 4 8%
Student > Bachelor 4 8%
Other 8 16%
Unknown 18 35%
Readers by discipline Count As %
Medicine and Dentistry 9 18%
Biochemistry, Genetics and Molecular Biology 5 10%
Nursing and Health Professions 5 10%
Agricultural and Biological Sciences 2 4%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 8 16%
Unknown 20 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 May 2018.
All research outputs
#14,393,794
of 25,382,440 outputs
Outputs from Respiratory Research
#1,347
of 3,062 outputs
Outputs of similar age
#156,140
of 326,540 outputs
Outputs of similar age from Respiratory Research
#33
of 53 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,540 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.