↓ Skip to main content

Classification of Breast Cancer Cells on the Basis of a Functional Assay for Estrogen Receptor

Overview of attention for article published in Molecular Medicine, July 1998
Altmetric Badge

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Classification of Breast Cancer Cells on the Basis of a Functional Assay for Estrogen Receptor
Published in
Molecular Medicine, July 1998
DOI 10.1007/bf03401751
Pubmed ID
Authors

Debajit K. Biswas, Lidia Averboukh, Shijie Sheng, Kathy Martin, Darren S. Ewaniuk, Teddy F. Jawde, Feilan Wang, Arthur B. Pardee

Abstract

The receptor (ER) for estrogen (E2) is routinely assayed as a marker to determine the feasibility of anti-hormone therapy against breast cancer because ER-positive (ER+) tumors are much more likely to respond to anti-hormone therapy than are ER-negative (ER-). However 40% of ER+ breast cancer patients do not respond to anti-hormone therapy. We suggest that this unpredictability of therapeutic responses lies in the current ER assays, which measure only an initial component of the E2-responsive pathway, and that the difference depends upon altered downstream processes. We propose a functional criterion that subclassifies breast cancers on the basis of specific binding of ER to its cognate DNA sequence, the estrogen response element (ERE). ER was identified in breast cancer cell lines by immunofluorescence assay, Western blot analysis, identification of ER-specific mRNA, and by interaction of the ER-ERE complex with three different ER-specific antibodies. ER-ERE complex formation was measured by electrophoretic mobility shift assay (EMSA). Transactivation of the E2-responsive gene was studied by transfection of cells with fusion gene construct with the promoter-containing ERE sequence and assay of reporter gene activity in the cell extracts. The growth of ER+ T47D cells was sensitive to tamoxifen, ICI-182,780, and ethynyl estradiol (EE2), whereas another ER+ breast cancer cell line, 21 PT, was resistant to these compounds. The estrogen receptor (ER) in the nuclear extracts of MCF-7 and T47D demonstrated hormone-dependent interaction with the response element (ERE) and also downstream transactivation of the E2-responsive PS2 promoter. But in the 21 PT cell line that was designated as ER- on the basis of ligand-binding assay and was found to be ER+ by all the other ER assays, ER-ERE interaction and PS2 promoter transactivation were independent of hormone. On the basis of the downstream functional assay of ER interaction with ERE, ER+ breast tumor cells can be subclassified into two categories. The first is E2-dependent (ERd+) and these cells should respond to anti-hormone therapy. The second type of ER interacts with ERE independent of E2 (ERi+) and constitutively transactivates responsive genes. It is predicted that the latter type of breast cancers will not respond to antihormone therapy.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 8%
Unknown 11 92%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 50%
Researcher 3 25%
Professor > Associate Professor 1 8%
Student > Master 1 8%
Unknown 1 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 50%
Chemistry 2 17%
Biochemistry, Genetics and Molecular Biology 1 8%
Medicine and Dentistry 1 8%
Environmental Science 1 8%
Other 0 0%
Unknown 1 8%