↓ Skip to main content

Genome-wide comparative analysis of putative Pth11-related G protein-coupled receptors in fungi belonging to Pezizomycotina

Overview of attention for article published in BMC Microbiology, July 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide comparative analysis of putative Pth11-related G protein-coupled receptors in fungi belonging to Pezizomycotina
Published in
BMC Microbiology, July 2017
DOI 10.1186/s12866-017-1076-5
Pubmed ID
Authors

Xihui Xu, Guopeng Li, Lu Li, Zhenzhu Su, Chen Chen

Abstract

G-protein coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi, where they play important roles in signal transduction. Among them, the Pth11-related GPCRs form a large and divergent protein family, and are only found in fungi in Pezizomycotina. However, the evolutionary process and potential functions of Pth11-related GPCRs remain largely unknown. Twenty genomes of fungi in Pezizomycotina covering different nutritional strategies were mined for putative Pth11-related GPCRs. Phytopathogens encode much more putative Pth11-related GPCRs than symbionts, saprophytes, or entomopathogens. Based on the phylogenetic tree, these GPCRs can be divided into nine clades, with each clade containing fungi in different taxonomic orders. Instead of fungi from the same order, those fungi with similar nutritional strategies were inclined to share orthologs of putative Pth11-related GPCRs. Most of the CFEM domain-containing Pth11-related GPCRs, which were only included in two clades, were detected in phytopathogens. Furthermore, many putative Pth11-related GPCR genes of phytopathogens were upregulated during invasive plant infection, but downregulated under biotic stress. The expressions of putative Pth11-related GPCR genes of saprophytes and entomopathogens could be affected by nutrient conditions, especially the carbon source. The gene expressions revealed that Pth11-related GPCRs could respond to biotic/abiotic stress and invasive plant infection with different expression patterns. Our results indicated that the Pth11-related GPCRs existed before the diversification of Pezizomycotina and have been gained and/or lost several times during the evolutionary process. Tandem duplications and trophic variations have been important factors in this evolution.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 18%
Student > Bachelor 5 13%
Researcher 5 13%
Student > Master 5 13%
Student > Postgraduate 2 5%
Other 3 8%
Unknown 13 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 33%
Agricultural and Biological Sciences 8 20%
Arts and Humanities 2 5%
Nursing and Health Professions 1 3%
Computer Science 1 3%
Other 0 0%
Unknown 15 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 July 2017.
All research outputs
#18,961,244
of 23,498,099 outputs
Outputs from BMC Microbiology
#2,283
of 3,256 outputs
Outputs of similar age
#244,390
of 317,984 outputs
Outputs of similar age from BMC Microbiology
#29
of 52 outputs
Altmetric has tracked 23,498,099 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,256 research outputs from this source. They receive a mean Attention Score of 4.2. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,984 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.