↓ Skip to main content

Basic parametric analysis for a multi-state model in hospital epidemiology

Overview of attention for article published in BMC Medical Research Methodology, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
5 X users

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Basic parametric analysis for a multi-state model in hospital epidemiology
Published in
BMC Medical Research Methodology, July 2017
DOI 10.1186/s12874-017-0379-4
Pubmed ID
Authors

Maja von Cube, Martin Schumacher, Martin Wolkewitz

Abstract

The extended illness-death model is a useful tool to study the risks and consequences of hospital-acquired infections (HAIs). The statistical quantities of interest are the transition-specific hazard rates and the transition probabilities as well as attributable mortality (AM) and the population-attributable fraction (PAF). In the most general case calculation of these expressions is mathematically complex. When assuming time-constant hazards calculation of the quantities of interest is facilitated. In this situation the transition probabilities can be expressed in closed mathematical forms. The estimators for AM and PAF can be easily derived from these forms. In this paper, we show how to explicitly calculate all the transition probabilities of an extended-illness model with constant hazards. Using a parametric model to estimate the time-constant transition specific hazard rates of a data example, the transition probabilities, AM and PAF can be directly calculated. With a publicly available data example, we show how the approach provides first insights into principle time-dynamics and data structure. Assuming constant hazards facilitates the understanding of multi-state processes. Even in a non-constant hazards setting, the approach is a helpful first step for a comprehensive investigation of complex data.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 41%
Student > Master 3 10%
Researcher 3 10%
Other 2 7%
Student > Postgraduate 2 7%
Other 2 7%
Unknown 5 17%
Readers by discipline Count As %
Medicine and Dentistry 8 28%
Mathematics 6 21%
Business, Management and Accounting 2 7%
Nursing and Health Professions 2 7%
Psychology 1 3%
Other 3 10%
Unknown 7 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 August 2017.
All research outputs
#14,876,223
of 23,798,792 outputs
Outputs from BMC Medical Research Methodology
#1,432
of 2,092 outputs
Outputs of similar age
#177,596
of 316,282 outputs
Outputs of similar age from BMC Medical Research Methodology
#20
of 39 outputs
Altmetric has tracked 23,798,792 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,092 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,282 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.