↓ Skip to main content

Characterization of molecular diversity and genome-wide mapping of loci associated with resistance to stripe rust and stem rust in Ethiopian bread wheat accessions

Overview of attention for article published in BMC Plant Biology, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
86 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Characterization of molecular diversity and genome-wide mapping of loci associated with resistance to stripe rust and stem rust in Ethiopian bread wheat accessions
Published in
BMC Plant Biology, August 2017
DOI 10.1186/s12870-017-1082-7
Pubmed ID
Authors

Kebede T. Muleta, Matthew N. Rouse, Sheri Rynearson, Xianming Chen, Bedada G. Buta, Michael O. Pumphrey

Abstract

The narrow genetic basis of resistance in modern wheat cultivars and the strong selection response of pathogen populations have been responsible for periodic and devastating epidemics of the wheat rust diseases. Characterizing new sources of resistance and incorporating multiple genes into elite cultivars is the most widely accepted current mechanism to achieve durable varietal performance against changes in pathogen virulence. Here, we report a high-density molecular characterization and genome-wide association study (GWAS) of stripe rust and stem rust resistance in 190 Ethiopian bread wheat lines based on phenotypic data from multi-environment field trials and seedling resistance screening experiments. A total of 24,281 single nucleotide polymorphism (SNP) markers filtered from the wheat 90 K iSelect genotyping assay was used to survey Ethiopian germplasm for population structure, genetic diversity and marker-trait associations. Upon screening for field resistance to stripe rust in the Pacific Northwest of the United States and Ethiopia over multiple growing seasons, and against multiple races of stripe rust and stem rust at seedling stage, eight accessions displayed resistance to all tested races of stem rust and field resistance to stripe rust in all environments. Our GWAS results show 15 loci were significantly associated with seedling and adult plant resistance to stripe rust at false discovery rate (FDR)-adjusted probability (P) <0.10. GWAS also detected 9 additional genomic regions significantly associated (FDR-adjusted P < 0.10) with seedling resistance to stem rust in the Ethiopian wheat accessions. Many of the identified resistance loci were mapped close to previously identified rust resistance genes; however, three loci on the short arms of chromosomes 5A and 7B for stripe rust resistance and two on chromosomes 3B and 7B for stem rust resistance may be novel. Our results demonstrate that considerable genetic variation resides within the landrace accessions that can be utilized to broaden the genetic base of rust resistance in wheat breeding germplasm. The molecular markers identified in this study should be useful in efficiently targeting the associated resistance loci in marker-assisted breeding for rust resistance in Ethiopia and other countries.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 86 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 86 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 19%
Researcher 16 19%
Student > Doctoral Student 8 9%
Student > Master 5 6%
Student > Bachelor 4 5%
Other 11 13%
Unknown 26 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 42 49%
Biochemistry, Genetics and Molecular Biology 3 3%
Computer Science 3 3%
Engineering 2 2%
Economics, Econometrics and Finance 2 2%
Other 7 8%
Unknown 27 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 January 2018.
All research outputs
#17,910,703
of 22,996,001 outputs
Outputs from BMC Plant Biology
#1,914
of 3,281 outputs
Outputs of similar age
#227,636
of 317,469 outputs
Outputs of similar age from BMC Plant Biology
#15
of 34 outputs
Altmetric has tracked 22,996,001 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,281 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,469 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.