↓ Skip to main content

The role of alternative Polyadenylation in regulation of rhythmic gene expression

Overview of attention for article published in BMC Genomics, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The role of alternative Polyadenylation in regulation of rhythmic gene expression
Published in
BMC Genomics, August 2017
DOI 10.1186/s12864-017-3958-1
Pubmed ID
Authors

Natalia Ptitsyna, Sabri Boughorbel, Mohammed El Anbari, Andrey Ptitsyn

Abstract

Alternative transcription is common in eukaryotic cells and plays important role in regulation of cellular processes. Alternative polyadenylation results from ambiguous PolyA signals in 3' untranslated region (UTR) of a gene. Such alternative transcripts share the same coding part, but differ by a stretch of UTR that may contain important functional sites. The methodoogy of this study is based on mathematical modeling, analytical solution, and subsequent validation by datamining in multiple independent experimental data from previously published studies. In this study we propose a mathematical model that describes the population dynamics of alternatively polyadenylated transcripts in conjunction with rhythmic expression such as transcription oscillation driven by circadian or metabolic oscillators. Analysis of the model shows that alternative transcripts with different turnover rates acquire a phase shift if the transcript decay rate is different. Difference in decay rate is one of the consequences of alternative polyadenylation. Phase shift can reach values equal to half the period of oscillation, which makes alternative transcripts oscillate in abundance in counter-phase to each other. Since counter-phased transcripts share the coding part, the rate of translation becomes constant. We have analyzed a few data sets collected in circadian timeline for the occurrence of transcript behavior that fits the mathematical model. Alternative transcripts with different turnover rate create the effect of rectifier. This "molecular diode" moderates or completely eliminates oscillation of individual transcripts and stabilizes overall protein production rate. In our observation this phenomenon is very common in different tissues in plants, mice, and humans. The occurrence of counter-phased alternative transcripts is also tissue-specific and affects functions of multiple biological pathways. Accounting for this mechanism is important for understanding the natural and engineering the synthetic cellular circuits.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 25%
Researcher 4 20%
Student > Master 2 10%
Student > Bachelor 1 5%
Librarian 1 5%
Other 2 10%
Unknown 5 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 35%
Biochemistry, Genetics and Molecular Biology 3 15%
Medicine and Dentistry 2 10%
Nursing and Health Professions 1 5%
Social Sciences 1 5%
Other 1 5%
Unknown 5 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 August 2017.
All research outputs
#14,638,545
of 23,881,329 outputs
Outputs from BMC Genomics
#5,518
of 10,793 outputs
Outputs of similar age
#172,894
of 319,207 outputs
Outputs of similar age from BMC Genomics
#106
of 226 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,793 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,207 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 226 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.