↓ Skip to main content

Inbreeding depression under mixed outcrossing, self-fertilization and sib-mating

Overview of attention for article published in BMC Ecology and Evolution, May 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inbreeding depression under mixed outcrossing, self-fertilization and sib-mating
Published in
BMC Ecology and Evolution, May 2016
DOI 10.1186/s12862-016-0668-2
Pubmed ID
Authors

Emmanuelle Porcher, Russell Lande

Abstract

Biparental inbreeding, mating between two relatives, occurs at a low frequency in many natural plant populations, which also often have substantial rates of self-fertilization. Although biparental inbreeding is likely to influence the dynamics of inbreeding depression and the evolution of selfing rates, it has received limited theoretical attention in comparison to selfing. The only previous model suggested that biparental inbreeding can favour the maintenance of stable intermediate selfing rates, but made unrealistic assumptions about the genetic basis of inbreeding depression. Here we extend a genetic model of inbreeding depression, describing nearly recessive lethal mutations at a very large number of loci, to incorporate sib-mating. We also include a constant component of inbreeding depression modelling the effects of mildly deleterious, nearly additive alleles. We analyze how observed rates of sib-mating influence the mean number of heterozygous lethals alleles and inbreeding depression in a population reproducing by a mixture of self-fertilization, sib-mating and outcrossing. We finally use the ensuing relationship between equilibrium inbreeding depression and population selfing rate to infer the evolutionarily stable selfing rates expected under such a mixed mating system. We show that for a given rate of inbreeding, sib-mating is more efficient at purging inbreeding depression than selfing, because homozygosity of lethals increases more gradually through sib-mating than through selfing. Because sib-mating promotes the purging of inbreeding depression and the evolution of selfing, our genetic model of inbreeding depression also predicts that sib-mating is unlikely to maintain stable intermediate selfing rates. Our results imply that even low rates of sib-mating affect plant mating system evolution, by facilitating the evolution of selfing via more efficient purging of inbreeding depression. Alternative mechanisms, such as pollination ecology, are necessary to explain stable mixed selfing and outcrossing.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Colombia 1 1%
Germany 1 1%
France 1 1%
United Kingdom 1 1%
United States 1 1%
Unknown 77 94%

Demographic breakdown

Readers by professional status Count As %
Student > Master 15 18%
Researcher 13 16%
Student > Ph. D. Student 13 16%
Student > Bachelor 9 11%
Student > Postgraduate 4 5%
Other 13 16%
Unknown 15 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 46 56%
Environmental Science 8 10%
Biochemistry, Genetics and Molecular Biology 5 6%
Nursing and Health Professions 1 1%
Chemical Engineering 1 1%
Other 2 2%
Unknown 19 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2017.
All research outputs
#22,760,732
of 25,374,917 outputs
Outputs from BMC Ecology and Evolution
#3,511
of 3,714 outputs
Outputs of similar age
#298,427
of 342,338 outputs
Outputs of similar age from BMC Ecology and Evolution
#81
of 85 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,338 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 85 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.