↓ Skip to main content

An optimised clearing protocol for the quantitative assessment of sub-epidermal ovule tissues within whole cereal pistils

Overview of attention for article published in Plant Methods, August 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

twitter
15 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An optimised clearing protocol for the quantitative assessment of sub-epidermal ovule tissues within whole cereal pistils
Published in
Plant Methods, August 2017
DOI 10.1186/s13007-017-0217-z
Pubmed ID
Authors

Laura G. Wilkinson, Matthew R. Tucker

Abstract

Seed development in the angiosperms requires the production of a female gametophyte (embryo sac) within the ovule. Many aspects of female reproductive development in cereal crops are yet to be described, largely due to the technical difficulty in obtaining phenotypic information at the cellular or sub-cellular level. Hoyer's solution is currently well established as a solution for clearing thin tissues samples, such as sections or whole tissues of bryophytes, mycorrhizal fungi, and small model organisms (e.g. Arabidopsis thaliana). Here we report a Hoyer's solution-based clearing method to facilitate clearing of the whole barley pistil, with high reproducibility. The clearing process takes 10 days from fixation to visualisation, whereupon tissue is sufficiently clear to obtain multiple phenotypic measurements from sub-epidermal tissues and cells within the ovule. Visualisation of cereal ovules that have not been dissected from the pistil allows an unprecedented capability to collect quantitative morphological information from the developing ovule, integument, nucellus and embryo sac. This will enable comparisons with genetic data to reveal the contribution of pre-fertilisation ovule tissues towards downstream seed development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 30%
Student > Master 6 18%
Student > Ph. D. Student 5 15%
Student > Doctoral Student 3 9%
Student > Bachelor 3 9%
Other 2 6%
Unknown 4 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 17 52%
Biochemistry, Genetics and Molecular Biology 8 24%
Environmental Science 1 3%
Unspecified 1 3%
Engineering 1 3%
Other 0 0%
Unknown 5 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 December 2017.
All research outputs
#3,599,768
of 25,703,943 outputs
Outputs from Plant Methods
#189
of 1,284 outputs
Outputs of similar age
#61,289
of 327,096 outputs
Outputs of similar age from Plant Methods
#4
of 21 outputs
Altmetric has tracked 25,703,943 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,284 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,096 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.