↓ Skip to main content

Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments

Overview of attention for article published in Microbiome, August 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

blogs
1 blog
twitter
55 X users

Citations

dimensions_citation
155 Dimensions

Readers on

mendeley
185 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments
Published in
Microbiome, August 2017
DOI 10.1186/s40168-017-0322-2
Pubmed ID
Authors

Nina Dombrowski, Kiley W. Seitz, Andreas P. Teske, Brett J. Baker

Abstract

Deep-sea hydrothermal vents are hotspots for productivity and biodiversity. Thermal pyrolysis and circulation produce fluids rich in hydrocarbons and reduced compounds that stimulate microbial activity in surrounding sediments. Several studies have characterized the diversity of Guaymas Basin (Gulf of California) sediment-inhabiting microorganisms; however, many of the identified taxa lack cultures or genomic representations. Here, we resolved the metabolic potential and community-level interactions of these diverse communities by reconstructing and analyzing microbial genomes from metagenomic sequencing data. We reconstructed 115 microbial metagenome-assembled genomes comprising 27 distinct archaeal and bacterial phyla. The archaea included members of the DPANN and TACK superphyla, Bathyarchaeota, novel Methanosarcinales (GoM-Arc1), and anaerobic methane-oxidizing lineages (ANME-1). Among the bacterial phyla, members of the Bacteroidetes, Chloroflexi, and Deltaproteobacteria were metabolically versatile and harbored potential pathways for hydrocarbon and lipid degradation and a variety of respiratory processes. Genes encoding enzymes that activate anaerobic hydrocarbons for degradation were detected in Bacteroidetes, Chloroflexi, Latescibacteria, and KSB1 phyla, while the reconstructed genomes for most candidate bacteria phyla (Aminicenantes, Atribacteria, Omnitrophica, and Stahlbacteria) indicated a fermentative metabolism. Newly obtained GoM-Arc1 archaeal genomes encoded novel pathways for short-chain hydrocarbon oxidation by alkyl-coenzyme M formation. We propose metabolic linkages among different functional groups, such as fermentative community members sharing substrate-level interdependencies with sulfur- and nitrogen-cycling microbes. Overall, inferring the physiologies of archaea and bacteria from metagenome-assembled genomes in hydrothermal deep-sea sediments has revealed potential mechanisms of carbon cycling in deep-sea sediments. Our results further suggest a network of biogeochemical interdependencies in organic matter utilization, hydrocarbon degradation, and respiratory sulfur cycling among deep-sea-inhabiting microbial communities.

X Demographics

X Demographics

The data shown below were collected from the profiles of 55 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 185 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 185 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 37 20%
Researcher 26 14%
Student > Bachelor 20 11%
Student > Master 19 10%
Student > Doctoral Student 14 8%
Other 28 15%
Unknown 41 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 44 24%
Biochemistry, Genetics and Molecular Biology 32 17%
Environmental Science 23 12%
Immunology and Microbiology 12 6%
Earth and Planetary Sciences 12 6%
Other 14 8%
Unknown 48 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 36. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2018.
All research outputs
#1,140,643
of 25,706,302 outputs
Outputs from Microbiome
#341
of 1,790 outputs
Outputs of similar age
#22,688
of 326,007 outputs
Outputs of similar age from Microbiome
#21
of 63 outputs
Altmetric has tracked 25,706,302 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,790 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 37.7. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,007 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.