↓ Skip to main content

Nanostructured biosensor using bioluminescence quenching technique for glucose detection

Overview of attention for article published in Journal of Nanobiotechnology, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nanostructured biosensor using bioluminescence quenching technique for glucose detection
Published in
Journal of Nanobiotechnology, August 2017
DOI 10.1186/s12951-017-0294-1
Pubmed ID
Authors

Longyan Chen, Longyi Chen, Michelle Dotzert, C. W. James Melling, Jin Zhang

Abstract

Most methods for monitoring glucose level require an external energy source which may limit their application, particularly in vivo test. Bioluminescence technique offers an alternative way to provide emission light without external energy source by using bioluminescent proteins found from firefly or marine vertebrates and invertebrates. For quick and non-invasive detection of glucose, we herein developed a nanostructured biosensor by applying the bioluminescence technique. Luciferase bioluminescence protein (Rluc) is conjugated with β-cyclodextrin (β-CD). The bioluminescence intensity of Rluc can be quenched by 8 ± 3 nm gold nanoparticles (Au NPs) when Au NPs covalently bind to β-CD. In the presence of glucose, Au NPs are replaced and leave far from Rluc through a competitive reaction, which results in the restored bioluminescence intensity of Rluc. A linear relationship is observed between the restored bioluminescence intensity and the logarithmic glucose concentration in the range of 1-100 µM. In addition, the selectivity of this designed sensor has been evaluated. The performance of the senor for determination of the concentration of glucose in the blood of diabetic rats is studied for comparison with that of the concentration of glucose in aqueous. This study demonstrates the design of a bioluminescence sensor for quickly detecting the concentration of glucose sensitively.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 20%
Researcher 8 16%
Student > Master 7 14%
Student > Bachelor 5 10%
Professor 3 6%
Other 4 8%
Unknown 12 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 22%
Chemistry 7 14%
Engineering 4 8%
Agricultural and Biological Sciences 3 6%
Medicine and Dentistry 2 4%
Other 6 12%
Unknown 16 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 January 2018.
All research outputs
#14,119,984
of 23,393,513 outputs
Outputs from Journal of Nanobiotechnology
#481
of 1,505 outputs
Outputs of similar age
#167,664
of 318,256 outputs
Outputs of similar age from Journal of Nanobiotechnology
#8
of 12 outputs
Altmetric has tracked 23,393,513 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,505 research outputs from this source. They receive a mean Attention Score of 3.6. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,256 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.