↓ Skip to main content

Influence of epistasis on response to genomic selection using complete sequence data

Overview of attention for article published in Genetics Selection Evolution, August 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

twitter
12 X users

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Influence of epistasis on response to genomic selection using complete sequence data
Published in
Genetics Selection Evolution, August 2017
DOI 10.1186/s12711-017-0340-3
Pubmed ID
Authors

Natalia S. Forneris, Zulma G. Vitezica, Andres Legarra, Miguel Pérez-Enciso

Abstract

The effect of epistasis on response to selection is a highly debated topic. Here, we investigated the impact of epistasis on response to sequence-based selection via genomic best linear prediction (GBLUP) in a regime of strong non-symmetrical epistasis under divergent selection, using real Drosophila sequence data. We also explored the possible advantage of including epistasis in the evaluation model and/or of knowing the causal mutations. Response to selection was almost exclusively due to changes in allele frequency at a few loci with a large effect. Response was highly asymmetric (about four phenotypic standard deviations higher for upward than downward selection) due to the highly skewed site frequency spectrum. Epistasis accentuated this asymmetry and affected response to selection by modulating the additive genetic variance, which was sustained for longer under upward selection whereas it eroded rapidly under downward selection. Response to selection was quite insensitive to the evaluation model, especially under an additive scenario. Nevertheless, including epistasis in the model when there was none eventually led to lower accuracies as selection proceeded. Accounting for epistasis in the model, if it existed, was beneficial but only in the medium term. There was not much gain in response if causal mutations were known, compared to using sequence data, which is likely due to strong linkage disequilibrium, high heritability and availability of phenotypes on candidates. Epistatic interactions affect the response to genomic selection by modulating the additive genetic variance used for selection. Epistasis releases additive variance that may increase response to selection compared to a pure additive genetic action. Furthermore, genomic evaluation models and, in particular, GBLUP are robust, i.e. adding complexity to the model did not modify substantially the response (for a given architecture).

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 28%
Researcher 12 26%
Student > Master 6 13%
Student > Doctoral Student 3 6%
Student > Postgraduate 3 6%
Other 3 6%
Unknown 7 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 34 72%
Biochemistry, Genetics and Molecular Biology 2 4%
Medicine and Dentistry 2 4%
Social Sciences 1 2%
Unknown 8 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 August 2017.
All research outputs
#5,311,777
of 25,382,440 outputs
Outputs from Genetics Selection Evolution
#133
of 821 outputs
Outputs of similar age
#83,905
of 324,511 outputs
Outputs of similar age from Genetics Selection Evolution
#2
of 14 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 821 research outputs from this source. They receive a mean Attention Score of 4.1. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,511 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.