↓ Skip to main content

Network-dosage compensation topologies as recurrent network motifs in natural gene networks

Overview of attention for article published in BMC Systems Biology, June 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
22 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Network-dosage compensation topologies as recurrent network motifs in natural gene networks
Published in
BMC Systems Biology, June 2014
DOI 10.1186/1752-0509-8-69
Pubmed ID
Authors

Ruijie Song, Ping Liu, Murat Acar

Abstract

Global noise in gene expression and chromosome duplication during cell-cycle progression cause inevitable fluctuations in the effective number of copies of gene networks in cells. These indirect and direct alterations of network copy numbers have the potential to change the output or activity of a gene network. For networks whose specific activity levels are crucial for optimally maintaining cellular functions, cells need to implement mechanisms to robustly compensate the effects of network dosage fluctuations.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 32%
Researcher 5 23%
Student > Doctoral Student 2 9%
Professor 2 9%
Student > Postgraduate 2 9%
Other 2 9%
Unknown 2 9%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 55%
Biochemistry, Genetics and Molecular Biology 3 14%
Engineering 2 9%
Unknown 5 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 June 2014.
All research outputs
#15,288,925
of 23,498,099 outputs
Outputs from BMC Systems Biology
#603
of 1,144 outputs
Outputs of similar age
#129,386
of 229,890 outputs
Outputs of similar age from BMC Systems Biology
#11
of 26 outputs
Altmetric has tracked 23,498,099 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,144 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 229,890 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.