↓ Skip to main content

Lipases and lipid droplet-associated protein expression in subcutaneous white adipose tissue of cachectic patients with cancer

Overview of attention for article published in Lipids in Health and Disease, August 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Lipases and lipid droplet-associated protein expression in subcutaneous white adipose tissue of cachectic patients with cancer
Published in
Lipids in Health and Disease, August 2017
DOI 10.1186/s12944-017-0547-x
Pubmed ID
Authors

Renata Silvério, Fábio S. Lira, Lila M. Oyama, Cláudia M. Oller do Nascimento, José P. Otoch, Paulo S. M. Alcântara, Miguel L. Batista, Marília Seelaender

Abstract

Cancer cachexia is a multifactorial metabolic syndrome characterized by marked loss of adipose tissue and skeletal muscle. Fat loss from adipose tissue in cancer cachexia is partly the result of increased lipolysis. Despite the growing amount of studies focused on elucidating the mechanisms through which lipolysis-related proteins regulate the lipolytic process, there are scarce data concerning that profile in the adipose tissue of cancer cachectic patients. Considering its fundamental importance, it was our main purpose to characterize the expression of the lipolysis-related proteins in the white adipose tissue of cachectic cancer patients. Patients from the University Hospital were divided into three groups: control, cancer cachexia (CC), and weight-stable cancer patients (WSC). To gain greater insight into adipose tissue wasting during cancer cachexia progression, we have also analyzed an experimental model of cachexia (Walker 256 carcinosarcoma). Animals were divided into: control, intermediate cachexia (IC) and terminal cachexia (TC). Subcutaneous white adipose tissue of patients and epidydimal white adipose tissue of animals were investigated regarding molecular aspects by determining the protein content and gene expression of hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL), comparative gene identification-58 (CGI-58), perilipin 1, leptin, adiponectin, visfatin, and tumour necrosis factor alpha (TNF-alpha). We found augmented lipolysis in CC associated with increased HSL expression, as well as upregulation of ATGL expression and reduction in perilipin 1 content. In IC, there was an imbalance in the secretion of pro- and anti-inflammatory factors. The alterations at the end-stage of cachexia were even more profound, and there was a reduction in the expression of almost all proteins analyzed in the animals. Our findings show that cachexia induces important morphological, molecular, and humoral alterations in the white adipose tissue, which are specific to the stage of the syndrome.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 71 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 14%
Student > Bachelor 8 11%
Student > Doctoral Student 7 10%
Student > Ph. D. Student 4 6%
Student > Master 4 6%
Other 9 13%
Unknown 29 41%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 18%
Medicine and Dentistry 12 17%
Agricultural and Biological Sciences 8 11%
Immunology and Microbiology 4 6%
Nursing and Health Professions 2 3%
Other 7 10%
Unknown 25 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 August 2017.
All research outputs
#20,444,703
of 22,999,744 outputs
Outputs from Lipids in Health and Disease
#1,208
of 1,458 outputs
Outputs of similar age
#277,223
of 317,366 outputs
Outputs of similar age from Lipids in Health and Disease
#21
of 25 outputs
Altmetric has tracked 22,999,744 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,458 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,366 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.