↓ Skip to main content

Historical biogeography and ecological niche modelling of the Asimina-Disepalum clade (Annonaceae): role of ecological differentiation in Neotropical-Asian disjunctions and diversification in Asia

Overview of attention for article published in BMC Ecology and Evolution, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Historical biogeography and ecological niche modelling of the Asimina-Disepalum clade (Annonaceae): role of ecological differentiation in Neotropical-Asian disjunctions and diversification in Asia
Published in
BMC Ecology and Evolution, August 2017
DOI 10.1186/s12862-017-1038-4
Pubmed ID
Authors

Pui-Sze Li, Daniel C. Thomas, Richard M. K. Saunders

Abstract

The Asimina-Disepalum clade (Annonaceae subfam. Annonoideae tribe Annoneae) includes a major Neotropical-Asian biogeographical disjunction. We evaluate whether this disjunction can be explained by the Eocene boreotropics hypothesis, which relies on the existence of extensive boreotropical forests during the Late Palaeocene-Early Eocene thermal maximum (52-50 Ma), followed by disruption of boreotropical vegetation during post-Eocene cooling. Molecular dating using an uncorrelated relaxed molecular clock (UCLD) model with two fossil calibrations, ancestral range estimation, and ecological niche modelling across evolutionary time were performed. Our focus was the geographical origin of Disepalum and general biogeographic patterns within this genus. Comparison of ecological tolerance among extant species and niche reconstructions at ancestral nodes within the clade enabled insights in likely migration routes of lineages, as well as evaluating the role of bioclimatic ecological differentiation in the diversification of Disepalum within Southeast Asia. The inferred vicariance event associated with the Asimina-Disepalum disjunction is estimated to have originated ca. 40 Mya [95% highest posterior density (HPD): 44.3-35.5 Mya]. The Disepalum crown lineage is estimated to have originated ca. 9 Mya (95% HPD: 10.6-7.6), either in western Malesia and continental Southeast Asia, or exclusively in western Malesia. Ecological niche modelling shows that seasonality of temperature and precipitation are major contributors determining the geographical range of species. Ancestral niche modelling furthermore indicates that the ancestor of the Asimina-Disepalum clade likely had bioclimatic preferences close to conditions found in current tropical and subtropical climates across Asia, whereas the ancestors of the Asimina and Disepalum crown groups are projected onto the more subtropical and tropical regions, respectively. The vicariance event associated with the Neotropical-Asian disjunction within the Asimina-Disepalum clade likely coincided with climatic deterioration at the Eocene-Oligocene boundary. Although detrended component analyses (DCA) indicate that altitude and seasonality of temperature and precipitation have the greatest influence in determining the geographical range of species, isolation due to palaeogeographic and palaeoclimatic events appears to be of greater significance than climate niche differentiation in driving diversification in Disepalum.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 17%
Student > Ph. D. Student 8 14%
Researcher 7 12%
Student > Bachelor 5 8%
Professor > Associate Professor 5 8%
Other 14 24%
Unknown 10 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 51%
Biochemistry, Genetics and Molecular Biology 7 12%
Environmental Science 4 7%
Business, Management and Accounting 1 2%
Computer Science 1 2%
Other 3 5%
Unknown 13 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 January 2018.
All research outputs
#16,725,651
of 25,382,440 outputs
Outputs from BMC Ecology and Evolution
#2,818
of 3,714 outputs
Outputs of similar age
#197,824
of 327,198 outputs
Outputs of similar age from BMC Ecology and Evolution
#51
of 65 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,198 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.