↓ Skip to main content

RIG-I overexpression decreases mortality of cigarette smoke exposed mice during influenza A virus infection

Overview of attention for article published in Respiratory Research, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
5 X users

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RIG-I overexpression decreases mortality of cigarette smoke exposed mice during influenza A virus infection
Published in
Respiratory Research, September 2017
DOI 10.1186/s12931-017-0649-z
Pubmed ID
Authors

Xiaoqiu Wang, Wenxin Wu, Wei Zhang, J. Leland Booth, Elizabeth S. Duggan, Lili Tian, Sunil More, Yan D. Zhao, Ravindranauth N. Sawh, Lin Liu, Ming-Hui Zou, Jordan P. Metcalf

Abstract

Retinoic acid-inducible gene I (RIG-I) is an important regulator of virus-induced antiviral interferons (IFNs) and proinflammatory cytokines which participate in clearing viral infections. Cigarette smoke (CS) exposure increases the frequency and severity of respiratory tract infections. We generated a RIG-I transgenic (TG) mouse strain that expresses the RIG-I gene product under the control of the human lung specific surfactant protein C promoter. We compared the mortality and host immune responses of RIG-I TG mice and their litter-matched wild type (WT) mice following challenge with influenza A virus (IAV). RIG-I overexpression increased survival of IAV-infected mice. CS exposure increased mortality in WT mice infected with IAV. Remarkably, the effect of RIG-I overexpression on survival during IAV infection was enhanced in CS-exposed animals. CS-exposed IAV-infected WT mice had a suppressed innate response profile in the lung compared to sham-exposed IAV-infected WT mice in terms of the protein concentration, total cell count and inflammatory cell composition in the bronchoalveolar lavage fluid. RIG-I overexpression restored the innate immune response in CS-exposed mice to that seen in sham-exposed WT mice during IAV infection, and is likely responsible for enhanced survival in RIG-I TG mice as restoration preceded death of the animals. Our results demonstrate that RIG-I overexpression in mice is protective for CS enhanced susceptibility of smokers to influenza infection, and that CS mediated RIG-I suppression may be partially responsible for the increased morbidity and mortality of the mice exposed to IAV. Thus, optimizing the RIG-I response may be an important treatment strategy for CS-enhanced lung infections, particularly those due to IAV.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 21%
Student > Bachelor 5 18%
Student > Doctoral Student 3 11%
Student > Postgraduate 3 11%
Student > Ph. D. Student 2 7%
Other 2 7%
Unknown 7 25%
Readers by discipline Count As %
Medicine and Dentistry 8 29%
Veterinary Science and Veterinary Medicine 3 11%
Biochemistry, Genetics and Molecular Biology 3 11%
Nursing and Health Professions 2 7%
Immunology and Microbiology 2 7%
Other 2 7%
Unknown 8 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 November 2017.
All research outputs
#15,745,807
of 25,382,440 outputs
Outputs from Respiratory Research
#1,762
of 3,062 outputs
Outputs of similar age
#177,877
of 324,458 outputs
Outputs of similar age from Respiratory Research
#28
of 38 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,458 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.