↓ Skip to main content

Robust gene selection methods using weighting schemes for microarray data analysis

Overview of attention for article published in BMC Bioinformatics, September 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
13 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Robust gene selection methods using weighting schemes for microarray data analysis
Published in
BMC Bioinformatics, September 2017
DOI 10.1186/s12859-017-1810-x
Pubmed ID
Authors

Suyeon Kang, Jongwoo Song

Abstract

A common task in microarray data analysis is to identify informative genes that are differentially expressed between two different states. Owing to the high-dimensional nature of microarray data, identification of significant genes has been essential in analyzing the data. However, the performances of many gene selection techniques are highly dependent on the experimental conditions, such as the presence of measurement error or a limited number of sample replicates. We have proposed new filter-based gene selection techniques, by applying a simple modification to significance analysis of microarrays (SAM). To prove the effectiveness of the proposed method, we considered a series of synthetic datasets with different noise levels and sample sizes along with two real datasets. The following findings were made. First, our proposed methods outperform conventional methods for all simulation set-ups. In particular, our methods are much better when the given data are noisy and sample size is small. They showed relatively robust performance regardless of noise level and sample size, whereas the performance of SAM became significantly worse as the noise level became high or sample size decreased. When sufficient sample replicates were available, SAM and our methods showed similar performance. Finally, our proposed methods are competitive with traditional methods in classification tasks for microarrays. The results of simulation study and real data analysis have demonstrated that our proposed methods are effective for detecting significant genes and classification tasks, especially when the given data are noisy or have few sample replicates. By employing weighting schemes, we can obtain robust and reliable results for microarray data analysis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 31%
Professor > Associate Professor 2 15%
Student > Bachelor 1 8%
Professor 1 8%
Student > Master 1 8%
Other 3 23%
Unknown 1 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 15%
Computer Science 2 15%
Biochemistry, Genetics and Molecular Biology 1 8%
Mathematics 1 8%
Unspecified 1 8%
Other 4 31%
Unknown 2 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 September 2017.
All research outputs
#20,444,703
of 22,999,744 outputs
Outputs from BMC Bioinformatics
#6,887
of 7,312 outputs
Outputs of similar age
#276,294
of 316,396 outputs
Outputs of similar age from BMC Bioinformatics
#96
of 107 outputs
Altmetric has tracked 22,999,744 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,312 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,396 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 107 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.