↓ Skip to main content

Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer’s disease and down syndrome

Overview of attention for article published in Molecular Neurodegeneration, September 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

news
1 news outlet
twitter
4 X users
patent
1 patent
facebook
1 Facebook page

Citations

dimensions_citation
206 Dimensions

Readers on

mendeley
253 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer’s disease and down syndrome
Published in
Molecular Neurodegeneration, September 2017
DOI 10.1186/s13024-017-0206-8
Pubmed ID
Authors

Harutsugu Tatebe, Takashi Kasai, Takuma Ohmichi, Yusuke Kishi, Tomoshi Kakeya, Masaaki Waragai, Masaki Kondo, David Allsop, Takahiko Tokuda

Abstract

There is still a substantial unmet need for less invasive and lower-cost blood-based biomarkers to detect brain Alzheimer's disease (AD) pathology. This study is aimed to determine whether quantification of plasma tau phosphorylated at threonine 181 (p-tau181) is informative in the diagnosis of AD. We have developed a novel ultrasensitive immunoassay to quantify plasma p-tau181, and measured the levels of plasma p-tau181 in three cohorts. In the first cohort composed of 20 AD patients and 15 age-matched controls, the plasma levels of p-tau181 were significantly higher in the AD patients than those in the controls (0.171 ± 0.166 pg/ml in AD versus 0.0405 ± 0.0756 pg/ml in controls, p = 0.0039). The percentage of the subjects whose levels of plasma p-tau181 exceeded the cut-off value (0.0921 pg/ml) was significantly higher in the AD group compared with the control group (60% in AD versus 16.7% in controls, p = 0.0090). In the second cohort composed of 20 patients with Down syndrome (DS) and 22 age-matched controls, the plasma concentrations of p-tau181 were significantly higher in the DS group (0.767 ± 1.26 pg/ml in DS versus 0.0415 ± 0.0710 pg/ml in controls, p = 0.0313). There was a significant correlation between the plasma levels of p-tau181 and age in the DS group (R(2) = 0.4451, p = 0.0013). All of the DS individuals showing an extremely high concentration of plasma p-tau181 (> 1.0 pg/ml) were older than the age of 40. In the third cohort composed of 8 AD patients and 3 patients with other neurological diseases, the levels of plasma p-tau181 significantly correlated with those of CSF p-tau181 (R(2) = 0.4525, p = 0.023). We report for the first time quantitative data on the plasma levels of p-tau181 in controls and patients with AD and DS, and these data suggest that the plasma p-tau181 is a promising blood biomarker for brain AD pathology. This exploratory pilot study warrants further large-scale and well-controlled studies to validate the usefulness of plasma p-tau181 as an urgently needed surrogate marker for the diagnosis and disease progression of AD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 253 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 253 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 33 13%
Researcher 33 13%
Student > Master 27 11%
Student > Bachelor 20 8%
Other 20 8%
Other 27 11%
Unknown 93 37%
Readers by discipline Count As %
Neuroscience 33 13%
Medicine and Dentistry 30 12%
Biochemistry, Genetics and Molecular Biology 25 10%
Agricultural and Biological Sciences 19 8%
Psychology 10 4%
Other 24 9%
Unknown 112 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2021.
All research outputs
#2,113,296
of 23,340,595 outputs
Outputs from Molecular Neurodegeneration
#221
of 864 outputs
Outputs of similar age
#42,254
of 316,473 outputs
Outputs of similar age from Molecular Neurodegeneration
#2
of 20 outputs
Altmetric has tracked 23,340,595 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 864 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.5. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,473 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.