↓ Skip to main content

TREK-1 mediates isoflurane-induced cytotoxicity in astrocytes

Overview of attention for article published in BMC Anesthesiology, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
TREK-1 mediates isoflurane-induced cytotoxicity in astrocytes
Published in
BMC Anesthesiology, September 2017
DOI 10.1186/s12871-017-0420-5
Pubmed ID
Authors

Haiyun Guo, Zhengwu Peng, Liu Yang, Xue Liu, Yaning Xie, Yanhui Cai, Lize Xiong, Yi Zeng

Abstract

There are growing concerns that anaesthetic exposure can cause extensive apoptotic degeneration of neurons and the impairment of normal synaptic development and remodelling. However, little attention has been paid to exploring the possible cytotoxicity of inhalation anaesthetics, such as isoflurane, in astrocytes. In this research, we determined that prolonged exposure to an inhalation anaesthetic caused cytotoxicity in astrocytes, and we identified the underlying molecular mechanism responsible for this process. Astrocytes were exposed to isoflurane, and astrocytic survival was then measured via LDH release assays, MTT assays, and TUNEL staining. TWIK-related potassium (K(+)) channel-1 (TREK-1) over-expression and knockdown models were also created using lentiviruses. The levels of TREK-1 and brain-derived neurotrophic factor (BDNF) were measured via Western blot and qRT-PCR. Prolonged exposure to isoflurane decreased primary astrocytic viability in a dose- and time-dependent manner. Moreover, with prolonged exposure to isoflurane, the TREK-1 level increased, and the BDNF level was reduced. TREK-1 knockdown promoted the survival of astrocytes and increased BDNF expression following isoflurane exposure. Overdoses of and prolonged exposure to isoflurane induce cytotoxicity in primary astrocytes. TREK-1 plays an important role in isoflurane-induced cultured astrocytic cytotoxicity by down-regulating the expression of BDNF.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 2 18%
Researcher 2 18%
Student > Ph. D. Student 2 18%
Lecturer 1 9%
Student > Master 1 9%
Other 1 9%
Unknown 2 18%
Readers by discipline Count As %
Neuroscience 3 27%
Medicine and Dentistry 2 18%
Biochemistry, Genetics and Molecular Biology 1 9%
Veterinary Science and Veterinary Medicine 1 9%
Agricultural and Biological Sciences 1 9%
Other 0 0%
Unknown 3 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2017.
All research outputs
#14,954,297
of 23,001,641 outputs
Outputs from BMC Anesthesiology
#596
of 1,509 outputs
Outputs of similar age
#187,055
of 315,613 outputs
Outputs of similar age from BMC Anesthesiology
#27
of 46 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,509 research outputs from this source. They receive a mean Attention Score of 3.1. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,613 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 46 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.