↓ Skip to main content

Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing

Overview of attention for article published in BMC Genomics, September 2017
Altmetric Badge

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing
Published in
BMC Genomics, September 2017
DOI 10.1186/s12864-017-4093-8
Pubmed ID
Authors

Tifu Zhang, Minfeng Gu, Yuhe Liu, Yuanda Lv, Ling Zhou, Haiyan Lu, Shuaiqiang Liang, Huabin Bao, Han Zhao

Abstract

Quinoa (Chenopodium quinoa Willd.) is a balanced nutritional crop, but its breeding improvement has been limited by the lack of information on its genetics and genomics. Therefore, it is necessary to obtain knowledge on genomic variation, population structure, and genetic diversity and to develop novel Insertion/Deletion (InDel) markers for quinoa by whole-genome re-sequencing. We re-sequenced 11 quinoa accessions and obtained a coverage depth between approximately 7× to 23× the quinoa genome. Based on the 1453-megabase (Mb) assembly from the reference accession Riobamba, 8,441,022 filtered bi-allelic single nucleotide polymorphisms (SNPs) and 842,783 filtered InDels were identified, with an estimated SNP and InDel density of 5.81 and 0.58 per kilobase (kb). From the genomic InDel variations, 85 dimorphic InDel markers were newly developed and validated. Together with the 62 simple sequence repeat (SSR) markers reported, a total of 147 markers were used for genotyping the 129 quinoa accessions. Molecular grouping analysis showed classification into two major groups, the Andean highland (composed of the northern and southern highland subgroups) and Chilean coastal, based on combined STRUCTURE, phylogenetic tree and PCA (Principle Component Analysis) analyses. Further analysis of the genetic diversity exhibited a decreasing tendency from the Chilean coast group to the Andean highland group, and the gene flow between subgroups was more frequent than that between the two subgroups and the Chilean coastal group. The majority of the variations (approximately 70%) were found through an analysis of molecular variation (AMOVA) due to the diversity between the groups. This was congruent with the observation of a highly significant FST value (0.705) between the groups, demonstrating significant genetic differentiation between the Andean highland type of quinoa and the Chilean coastal type. Moreover, a core set of 16 quinoa germplasms that capture all 362 alleles was selected using a simulated annealing method. The large number of SNPs and InDels identified in this study demonstrated that the quinoa genome is enriched with genomic variations. Genetic population structure, genetic core germplasms and dimorphic InDel markers are useful resources for genetic analysis and quinoa breeding.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 18%
Student > Master 7 14%
Student > Ph. D. Student 6 12%
Student > Bachelor 5 10%
Student > Doctoral Student 2 4%
Other 7 14%
Unknown 14 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 32%
Biochemistry, Genetics and Molecular Biology 11 22%
Unspecified 2 4%
Social Sciences 2 4%
Nursing and Health Professions 1 2%
Other 1 2%
Unknown 17 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 September 2017.
All research outputs
#17,914,959
of 23,001,641 outputs
Outputs from BMC Genomics
#7,611
of 10,692 outputs
Outputs of similar age
#226,334
of 315,613 outputs
Outputs of similar age from BMC Genomics
#130
of 211 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,692 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,613 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 211 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.