↓ Skip to main content

Age-dependent changes in synaptic plasticity enhance tau oligomerization in the mouse hippocampus

Overview of attention for article published in Acta Neuropathologica Communications, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Age-dependent changes in synaptic plasticity enhance tau oligomerization in the mouse hippocampus
Published in
Acta Neuropathologica Communications, September 2017
DOI 10.1186/s40478-017-0469-x
Pubmed ID
Authors

Tetsuya Kimura, Mamiko Suzuki, Takumi Akagi

Abstract

The aggregation mechanism of phosphorylated tau is an important therapeutic target for tauopathies, including Alzheimer's disease, although the mechanism by which aggregation occurs is still unknown. Because the phosphorylation process of tau is involved in the trafficking of AMPA receptors, which accompanies the long-term depression (LTD) of synapses, we examined the effect of LTD-inducing low-frequency stimulation (LFS) on the formation of pathological tau aggregates in adult and aged wild-type mice. Our biochemical analysis demonstrated that LFS led to the formation of sarkosyl-insoluble (SI) tau oligomers in aged hippocampi but not in adult hippocampi in wild-type mice. In parallel, electrophysiological experiments showed an increased contribution of the autophagy-lysosomal pathway (ALP) to LTD during aging, although the other properties of LFS-induced LTD that we investigated were not altered. Thus, we anticipate that the increased contribution of the ALP to the LTD cascade is involved in the age-dependent formation of tau oligomers that results from LFS. Analysis of the LC3 ratio, an indicator of autophagosome formation, showed that LFS increased cleaved LC3 (type II) in the aged hippocampus relative to type I LC3, suggesting potentiation of the ALP accompanied by LTD. Pharmacological inhibition of autophagosome formation depressed LFS-induced oligomerization of tau. Prevention of lysosomal function in the ALP enhanced the formation of tau oligomers by LFS. These results suggest the importance of the autophagosome for the LFS-induced oligomerization of tau and suggest a reason for its age dependency. Interestingly, the lysosomal disturbance promoted the formation of the fibrillar form of aggregates consisting of hyper-phosphorylated tau. The LTD-ALP cascade potentially acts as one of the suppliers of pathological aggregates of tau in aged neurons.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 17%
Researcher 7 17%
Student > Ph. D. Student 7 17%
Student > Bachelor 6 15%
Student > Doctoral Student 3 7%
Other 7 17%
Unknown 4 10%
Readers by discipline Count As %
Neuroscience 15 37%
Biochemistry, Genetics and Molecular Biology 7 17%
Agricultural and Biological Sciences 7 17%
Nursing and Health Professions 1 2%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 1 2%
Unknown 9 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 May 2018.
All research outputs
#14,080,568
of 23,001,641 outputs
Outputs from Acta Neuropathologica Communications
#1,055
of 1,392 outputs
Outputs of similar age
#168,792
of 315,600 outputs
Outputs of similar age from Acta Neuropathologica Communications
#9
of 18 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,392 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.8. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,600 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.