↓ Skip to main content

Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites

Overview of attention for article published in BMC Genomics, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites
Published in
BMC Genomics, September 2017
DOI 10.1186/s12864-017-4127-2
Pubmed ID
Authors

Xuemei Shen, Zheng Wang, Xianqing Huang, Hongbo Hu, Wei Wang, Xuehong Zhang

Abstract

The current chassis organisms or various types of cell factories have considerable advantages and disadvantages. Therefore, it is necessary to develop various chassis for an efficient production of different bioproducts from renewable resources. In this context, synthetic biology offers unique potentialities to produce value-added products of interests. Microbial genome reduction and modification are important strategies for constructing cellular chassis and cell factories. Many genome-reduced strains from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum and Streptomyces, have been widely used for the production of amino acids, organic acids, and some enzymes. Some Pseudomonas strains could serve as good candidates for ideal chassis cells since they grow fast and can produce many valuable metabolites with low nutritional requirements and strong environmental adaptability. Pseudomonas chlororaphis GP72 is a non-pathogenic plant growth-promoting rhizobacterium that possesses capacities of tolerating various environmental stresses and synthesizing many kinds of bioactive compounds with high yield. These include phenazine-1-carboxylic acid (PCA) and 2-hydroxyphenazine (2-OH-PHZ), which exhibit strong bacteriostatic and antifungal activity toward some microbial pathogens. We depleted 685 kb (10.3% of the genomic sequence) from the chromosome of P. chlororaphis GP72(rpeA-) by a markerless deletion method, which included five secondary metabolic gene clusters and 17 strain-specific regions (525 non-essential genes). Then we characterized the 22 multiple-deletion series (MDS) strains. Growth characteristics, production of phenazines and morphologies were changed greatly in mutants with large-fragment deletions. Some of the genome-reduced P. chlororaphis mutants exhibited more productivity than the parental strain GP72(rpeA-). For example, strain MDS22 had 4.4 times higher production of 2-OH-PHZ (99.1 mg/L) than strain GP72(rpeA-), and the specific 2-OH-PHZ production rate (mmol/g/h) increased 11.5-fold. Also and MDS10 had the highest phenazine production (852.0 mg/L) among all the studied strains with a relatively high specific total phenazine production rate (0.0056 g/g/h). In conclusion, P. chlororaphis strains with reduced genome performed better in production of secondary metabolites than the parent strain. The newly developed mutants can be used for the further genetic manipulation to construct chassis cells with the less complex metabolic network, better regulation and more efficient productivity for diverse biotechnological applications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 20%
Student > Master 9 20%
Researcher 6 13%
Student > Bachelor 5 11%
Student > Doctoral Student 3 7%
Other 5 11%
Unknown 9 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 30%
Agricultural and Biological Sciences 13 28%
Immunology and Microbiology 4 9%
Chemistry 3 7%
Physics and Astronomy 1 2%
Other 2 4%
Unknown 9 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 May 2018.
All research outputs
#14,954,297
of 23,002,898 outputs
Outputs from BMC Genomics
#6,167
of 10,692 outputs
Outputs of similar age
#187,304
of 316,063 outputs
Outputs of similar age from BMC Genomics
#112
of 215 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,692 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,063 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 215 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.