↓ Skip to main content

Transcriptomic profiling of genes in matured dimorphic seeds of euhalophyte Suaeda salsa

Overview of attention for article published in BMC Genomics, September 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptomic profiling of genes in matured dimorphic seeds of euhalophyte Suaeda salsa
Published in
BMC Genomics, September 2017
DOI 10.1186/s12864-017-4104-9
Pubmed ID
Authors

Yange Xu, Yuanqin Zhao, Huimin Duan, Na Sui, Fang Yuan, Jie Song

Abstract

Suaeda salsa (S. salsa) is a euhalophyte with high economic value. S. salsa can produce dimorphic seeds. Brown seeds are more salt tolerant, can germinate quickly and maintain the fitness of the species under high saline conditions. Black seeds are less salt tolerant, may become part of the seed bank and germinate when soil salinity is reduced. Previous reports have mainly focused on the ecophysiological traits of seed germination and production under saline conditions in this species. However, there is no information available on the molecular characteristics of S. salsa dimorphic seeds. In the present study, a total of 5825 differentially expressed genes were obtained; and 4648 differentially expressed genes were annotated based on a sequence similarity search, utilizing five public databases by transcriptome analysis. The different expression of these genes may be associated with embryo development, fatty acid, osmotic regulation substances and plant hormones in brown and black seeds. Compared to black seeds, most genes may relate to embryo development, and various genes that encode fatty acid desaturase and are involved in osmotic regulation substance synthesis or transport are upregulated in brown seeds. A large number of differentially expressed genes related to plant hormones were found in brown and black seeds, and their possible roles in regulating seed dormancy/germination were discussed. Upregulated genes involved in seed development and osmotic regulation substance accumulation may relate to bigger seed size and rapid seed germination in brown seeds, compared to black seeds. Differentially expressed genes of hormones may relate to seed dormancy/germination and the development of brown and black seeds. The transcriptome dataset will serve as a valuable resource to further understand gene expression and functional genomics in S. salsa dimorphic seeds.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 25%
Student > Doctoral Student 2 10%
Student > Ph. D. Student 2 10%
Student > Master 2 10%
Student > Bachelor 1 5%
Other 2 10%
Unknown 6 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 50%
Biochemistry, Genetics and Molecular Biology 3 15%
Unknown 7 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 September 2017.
All research outputs
#20,447,499
of 23,002,898 outputs
Outputs from BMC Genomics
#9,322
of 10,692 outputs
Outputs of similar age
#276,277
of 316,290 outputs
Outputs of similar age from BMC Genomics
#193
of 219 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,692 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,290 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 219 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.