↓ Skip to main content

A joint analysis of metabolomics and genetics of breast cancer

Overview of attention for article published in Breast Cancer Research, August 2014
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
1 X user
patent
2 patents

Citations

dimensions_citation
161 Dimensions

Readers on

mendeley
186 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A joint analysis of metabolomics and genetics of breast cancer
Published in
Breast Cancer Research, August 2014
DOI 10.1186/s13058-014-0415-9
Pubmed ID
Authors

Xiaohu Tang, Chao-Chieh Lin, Ivan Spasojevic, Edwin S Iversen, Jen-Tsan Chi, Jeffrey R Marks

Abstract

IntroductionRemodeling of cellular metabolism appears to be a consequence and possibly a cause of oncogenic transformation in human cancers. Specific aspects of altered tumor metabolism may be amenable to therapeutic intervention and could be coordinated with other targeted therapies. In breast cancer, the genetic landscape has been defined most comprehensively in efforts such as The Cancer Genome Atlas (TCGA). However, little is known about how alterations of tumor metabolism correlate with this landscape.MethodsIn total 25 cancers (23 fully analyzed by TCGA) and 5 normal breast specimens were analyzed by gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry, quantitating 399 identifiable metabolites.ResultsWe found strong differences correlated with hormone receptor status with 18% of the metabolites elevated in estrogen receptor negative (ER-) cancers compared to estrogen receptor positive (ER+) including many glycolytic and glycogenolytic intermediates consistent with increased Warburg effects. Glutathione (GSH) pathway components were also elevated in ER- tumors consistent with an increased requirement for handling higher levels of oxidative stress. Additionally, ER- tumors had high levels of the oncometabolite 2-hydroxyglutarate (2-HG) and the immunomodulatory tryptophan metabolite kynurenine. Kynurenine levels were correlated with the expression of tryptophan degrading enzyme (IDO1). However, high levels of 2-HG were not associated with somatic mutations or expression levels of IDH1 or IDH2. BRCA1 mRNA levels were positively associated with coenzyme A, acetyl coenzyme A, and GSH and negatively associated with multiple lipid species, supporting the regulation of ACC1 and NRF2 by BRCA1. Different driver mutations were associated with distinct patterns of specific metabolites, such as lower levels of several lipid-glycerophosphocholines in tumors with mutated TP53. A strong metabolomic signature associated with proliferation rate was also observed; the metabolites in this signature overlap broadly with metabolites that define ER status as receptor status and proliferation rate were correlated.ConclusionsThe addition of metabolomic profiles to the public domain TCGA dataset provides an important new tool for discovery and hypothesis testing of the genetic regulation of tumor metabolism. Particular sets of metabolites may reveal insights into the metabolic dysregulation that underlie the heterogeneity of breast cancer.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 186 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 4 2%
Germany 1 <1%
France 1 <1%
Brazil 1 <1%
Italy 1 <1%
Mexico 1 <1%
United Kingdom 1 <1%
Unknown 176 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 37 20%
Researcher 35 19%
Student > Master 18 10%
Student > Bachelor 14 8%
Other 13 7%
Other 32 17%
Unknown 37 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 54 29%
Biochemistry, Genetics and Molecular Biology 38 20%
Medicine and Dentistry 21 11%
Chemistry 8 4%
Pharmacology, Toxicology and Pharmaceutical Science 5 3%
Other 19 10%
Unknown 41 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 November 2022.
All research outputs
#7,960,512
of 25,374,917 outputs
Outputs from Breast Cancer Research
#902
of 2,053 outputs
Outputs of similar age
#71,812
of 241,586 outputs
Outputs of similar age from Breast Cancer Research
#13
of 38 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 2,053 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.2. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 241,586 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.