↓ Skip to main content

In silico analysis of regulatory networks underlines the role of miR-10b-5p and its target BDNF in huntington’s disease

Overview of attention for article published in Translational Neurodegeneration, August 2014
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
In silico analysis of regulatory networks underlines the role of miR-10b-5p and its target BDNF in huntington’s disease
Published in
Translational Neurodegeneration, August 2014
DOI 10.1186/2047-9158-3-17
Pubmed ID
Authors

Sören Müller

Abstract

Non-coding RNAs (ncRNAs) play various roles during central nervous system development. MicroRNAs (miRNAs) are a class of ncRNAs that exert their function together with argonaute proteins by post-transcriptional gene silencing of messenger RNAs (mRNAs). Several studies provide evidence for alterations in miRNA expression in patients with neurodegenerative diseases. Among these is huntington's disease (HD), a dominantly inherited fatal disorder characterized by deregulation of neuronal-specific mRNAs as well as miRNAs. Recently, next-generation sequencing (NGS) miRNA profiles from human HD and neurologically normal control brain tissues were reported. Five consistently upregulated miRNAs affect the expression of genes involved in neuronal differentiation, neurite outgrowth, cell death and survival. We re-analyzed the NGS data publicly available in array express and detected nineteen additional differentially expressed miRNAs. Subsequently, we connected these miRNAs to genes implicated in HD development and network analysis pointed to miRNA-mediated downregulation of twenty-two genes with roles in the pathogenesis as well as treatment of the disease. In silico prediction and reporter systems prove that levels of BDNF, a central node in the miRNA-mRNA regulatory network, can be post-transcriptionally controlled by upregulated miR-10b-5p and miR-30a-5p. Reduced BDNF expression is associated with neuronal dysfunction and death in HD. Moreover, the 3'UTR of CREB1 harbors a predicted binding site for these two miRNAs. CREB1 is similarly downregulated in HD and overexpression decreased susceptibility to 3-nitropropionic-induced toxicity in a cell model. In contradiction to these observations, it is presumed that miR-10b-5p upregulation in HD exerts a neuroprotective role in response to the mutation in the huntingtin gene. Therefore, the function of miR-10b-5p and especially its effect on BDNF expression in HD requires further academic research.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Sri Lanka 1 2%
Brazil 1 2%
Unknown 47 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 20%
Student > Master 8 16%
Researcher 8 16%
Student > Bachelor 7 14%
Student > Postgraduate 2 4%
Other 5 10%
Unknown 10 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 26%
Biochemistry, Genetics and Molecular Biology 8 16%
Neuroscience 6 12%
Medicine and Dentistry 4 8%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 4 8%
Unknown 13 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2014.
All research outputs
#20,655,488
of 25,373,627 outputs
Outputs from Translational Neurodegeneration
#355
of 384 outputs
Outputs of similar age
#180,382
of 246,633 outputs
Outputs of similar age from Translational Neurodegeneration
#6
of 6 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 384 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 29.7. This one is in the 3rd percentile – i.e., 3% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 246,633 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one.