↓ Skip to main content

Regulation of Macrophage Migration Inhibitory Factor (MIF) Expression by Glucose and Insulin in Adipocytes In Vitro

Overview of attention for article published in Molecular Medicine, June 1999
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
2 X users
patent
21 patents

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Regulation of Macrophage Migration Inhibitory Factor (MIF) Expression by Glucose and Insulin in Adipocytes In Vitro
Published in
Molecular Medicine, June 1999
DOI 10.1007/bf03402125
Pubmed ID
Authors

Shinji Sakaue, Jun Nishihira, Junichi Hirokawa, Haruhiko Yoshimura, Toshiro Honda, Kenji Aoki, Seiichi Tagami, Yoshikazu Kawakami

Abstract

It has been reported that macrophage migration inhibitory factor (MIF) stimulated insulin secretion from pancreatic islet beta-cells in an autocrine manner, which suggests its pivotal role in the glucose metabolism. According to this finding, we evaluated MIF expression in cultured adipocytes and epididymal fat pads of obese and diabetic rats to investigate its role in adipose tissue. The murine adipocyte cell line 3T3-L1 was used to examine MIF mRNA expression and production of MIF protein in response to various concentrations of glucose and insulin. Epididymal fat pads of Otsuka Long-Evans Tokushima fatty (OLETF) and Wistar fatty rats, animal models of obesity and diabetes, were subjected to Northern blot analysis to determine MIF mRNA levels. MIF mRNA of 3T3-L1 adipocytes was up-regulated by costimulation with glucose and insulin. Intracellular MIF content was significantly increased by stimulation, whereas its content in the culture medium was decreased. When the cells were treated with cytochalasin B, MIF secretion in the medium was increased. Pioglitazone significantly increased MIF content in the culture medium of 3T3-L1 cells. However, MIF mRNA expression of both epididymal fat pads of OLETF and Wistar fatty rats was down-regulated despite a high plasma glucose level. The plasma MIF level of Wistar fatty rats was significantly increased by treatment with pioglitazone. We show here that the intracellular glucose level is critical to determining the MIF mRNA level as well as its protein content in adipose tissue. MIF is known to play an important role in glucose metabolism as a positive regulator of insulin secretion. In this context, it is conceivable that MIF may affect the pathophysiology of obesity and diabetes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 4%
Unknown 23 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 33%
Student > Master 3 13%
Other 2 8%
Professor > Associate Professor 2 8%
Researcher 2 8%
Other 4 17%
Unknown 3 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 42%
Medicine and Dentistry 4 17%
Immunology and Microbiology 2 8%
Biochemistry, Genetics and Molecular Biology 2 8%
Materials Science 1 4%
Other 1 4%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 November 2023.
All research outputs
#7,780,614
of 25,377,790 outputs
Outputs from Molecular Medicine
#374
of 1,206 outputs
Outputs of similar age
#11,056
of 35,791 outputs
Outputs of similar age from Molecular Medicine
#4
of 9 outputs
Altmetric has tracked 25,377,790 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 1,206 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.6. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 35,791 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than 5 of them.