↓ Skip to main content

Cone-beam CT reconstruction for non-periodic organ motion using time-ordered chain graph model

Overview of attention for article published in Radiation Oncology, September 2017
Altmetric Badge

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cone-beam CT reconstruction for non-periodic organ motion using time-ordered chain graph model
Published in
Radiation Oncology, September 2017
DOI 10.1186/s13014-017-0879-8
Pubmed ID
Authors

Masahiro Nakano, Akihiro Haga, Jun’ichi Kotoku, Taiki Magome, Yoshitaka Masutani, Shouhei Hanaoka, Satoshi Kida, Keiichi Nakagawa

Abstract

The purpose of this study is to introduce the new concept of a four-dimensional (4D) cone-beam computed tomography (CBCT) reconstruction approach for non-periodic organ motion in cooperation with the time-ordered chain graph model (TCGM) and to compare it with previously developed methods such as total variation-based compressed sensing (TVCS) and prior-image constrained compressed sensing (PICCS). Our proposed reconstruction is based on a model including the constraint originating from the images of neighboring time phases. Namely, the reconstructed time-series images depend on each other in this TCGM scheme, and the time-ordered images are concurrently reconstructed in the iterative reconstruction approach. In this study, iterative reconstruction with the TCGM was carried out with 90° projection ranges. The images reconstructed by the TCGM were compared with the images reconstructed by TVCS (200° projection ranges) and PICCS (90° projection ranges). Two kinds of projection data sets-an elliptic-cylindrical digital phantom and two clinical patients' data-were used. For the digital phantom, an air sphere was contained and virtually moved along the longitudinal axis by 3 cm/30 s and 3 cm/60 s; the temporal resolution was evaluated by measuring the penumbral width of the air sphere. The clinical feasibility of the non-periodic time-ordered 4D CBCT image reconstruction was examined with the patient data in the pelvic region. In the evaluation of the digital-phantom reconstruction, the penumbral widths of the TCGM yielded the narrowest result; the results obtained by PICCS and TCGM using 90° projection ranges were 2.8% and 18.2% for 3 cm/30 s, and 5.0% and 23.1% for 3 cm/60 s narrower than that of TVCS using 200° projection ranges. This suggests that the TCGM has a better temporal resolution, whereas PICCS seems similar to TVCS. These reconstruction methods were also compared using patients' projection data sets. Although all three reconstruction results showed motion related to rectal gas or stool, the result obtained by the TCGM was visibly clearer with less blurring. The TCGM is a feasible approach to visualize non-periodic organ motion. The digital-phantom results demonstrated that the proposed method provides 4D image series with a better temporal resolution compared to TVCS and PICCS. The clinical patients' results also showed that the present method enables us to visualize motion related to rectal gas and flatus in the rectum.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 15%
Student > Ph. D. Student 3 11%
Researcher 2 7%
Student > Postgraduate 2 7%
Lecturer 1 4%
Other 3 11%
Unknown 12 44%
Readers by discipline Count As %
Medicine and Dentistry 6 22%
Computer Science 4 15%
Engineering 3 11%
Social Sciences 1 4%
Unknown 13 48%