↓ Skip to main content

Greenhouse gas performance of biochemical biodiesel production from straw: soil organic carbon changes and time-dependent climate impact

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
66 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Greenhouse gas performance of biochemical biodiesel production from straw: soil organic carbon changes and time-dependent climate impact
Published in
Biotechnology for Biofuels and Bioproducts, September 2017
DOI 10.1186/s13068-017-0907-9
Pubmed ID
Authors

Hanna Karlsson, Serina Ahlgren, Mats Sandgren, Volkmar Passoth, Ola Wallberg, Per-Anders Hansson

Abstract

Use of bio-based diesel is increasing in Europe. It is currently produced from oilseed crops, but can also be generated from lignocellulosic biomass such as straw. However, removing straw affects soil organic carbon (SOC), with potential consequences for the climate impact of the biofuel. This study assessed the climate impacts and energy balance of biodiesel production from straw using oleaginous yeast, with subsequent biogas production from the residues, with particular emphasis on SOC changes over time. It also explored the impact of four different scenarios for returning the lignin fraction of the biomass to soil to mitigate SOC changes. Climate impact was assessed using two methods, global warming potential (GWP) and a time-dependent temperature model (∆T s ) that describes changes in mean global surface temperature as a function of time or absolute temperature change potential (AGTP). Straw-derived biodiesel reduced GWP by 33-80% compared with fossil fuels and primary fossil energy use for biodiesel production was 0.33-0.80 MJprim/MJ, depending on the scenario studied. Simulations using the time-dependent temperature model showed that a scenario where all straw fractions were converted to energy carriers and no lignin was returned to soil resulted in the highest avoided climate impact. The SOC changes due to straw removal had a large impact on the results, both when using GWP and the time-dependent temperature model. In a climate perspective, it is preferable to combust straw lignin to produce electricity rather than returning it to the soil if the excess electricity replaces natural gas electricity, according to results from both GWP and time-dependent temperature modelling. Using different methods to assess climate impact did not change the ranking between the scenarios, but the time-dependent temperature model provided information about system behaviour over time that can be important for evaluation of biofuel systems, particularly in relation to climate target deadlines.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 66 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 17%
Researcher 10 15%
Professor 5 8%
Student > Bachelor 5 8%
Student > Ph. D. Student 5 8%
Other 10 15%
Unknown 20 30%
Readers by discipline Count As %
Environmental Science 12 18%
Agricultural and Biological Sciences 8 12%
Engineering 7 11%
Biochemistry, Genetics and Molecular Biology 3 5%
Chemical Engineering 2 3%
Other 5 8%
Unknown 29 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 October 2017.
All research outputs
#16,051,091
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#882
of 1,578 outputs
Outputs of similar age
#184,219
of 323,485 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#12
of 26 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,485 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.