↓ Skip to main content

The effect of CSF-1 administration on lung maturation in a mouse model of neonatal hyperoxia exposure

Overview of attention for article published in Respiratory Research, September 2014
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The effect of CSF-1 administration on lung maturation in a mouse model of neonatal hyperoxia exposure
Published in
Respiratory Research, September 2014
DOI 10.1186/s12931-014-0110-5
Pubmed ID
Authors

Christina V Jones, Maliha A Alikhan, Megan O’Reilly, Foula Sozo, Timothy M Williams, Richard Harding, Graham Jenkin, Sharon D Ricardo

Abstract

BackgroundLung immaturity due to preterm birth is a significant complication affecting neonatal health. Despite the detrimental effects of supplemental oxygen on alveolar formation, it remains an important treatment for infants with respiratory distress. Macrophages are traditionally associated with the propagation of inflammatory insults, however increased appreciation of their diversity has revealed essential functions in development and regeneration.MethodsMacrophage regulatory cytokine Colony-Stimulating Factor-1 (CSF-1) was investigated in a model of neonatal hyperoxia exposure, with the aim of promoting macrophages associated with alveologenesis to protect/rescue lung development and function. Neonatal mice were exposed to normoxia (21% oxygen) or hyperoxia (Hyp; 65% oxygen); and administered CSF-1 (0.5 ¿g/g, daily¿×¿5) or vehicle (PBS) in two treatment regimes; 1) after hyperoxia from postnatal day (P)7-11, or 2) concurrently with five days of hyperoxia from P1-5. Lung structure, function and macrophages were assessed using alveolar morphometry, barometric whole-body plethysmography and flow cytometry.Results and discussionSeven days of hyperoxia resulted in an 18% decrease in body weight and perturbation of lung structure and function. In regime 1, growth restriction persisted in the Hyp¿+¿PBS and Hyp¿+¿CSF-1 groups, although perturbations in respiratory function were resolved by P35. CSF-1 increased CSF-1R+/F4/80+ macrophage number by 34% at P11 compared to Hyp¿+¿PBS, but was not associated with growth or lung structural rescue. In regime 2, five days of hyperoxia did not cause initial growth restriction in the Hyp¿+¿PBS and Hyp¿+¿CSF-1 groups, although body weight was decreased at P35 with CSF-1. CSF-1 was not associated with increased macrophages, or with functional perturbation in the adult. Overall, CSF-1 did not rescue the growth and lung defects associated with hyperoxia in this model; however, an increase in CSF-1R+ macrophages was not associated with an exacerbation of lung injury. The trophic functions of macrophages in lung development requires further elucidation in order to explore macrophage modulation as a strategy for promoting lung maturation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 5%
Unknown 20 95%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 19%
Student > Master 3 14%
Researcher 3 14%
Professor > Associate Professor 2 10%
Professor 2 10%
Other 3 14%
Unknown 4 19%
Readers by discipline Count As %
Medicine and Dentistry 5 24%
Agricultural and Biological Sciences 3 14%
Immunology and Microbiology 2 10%
Biochemistry, Genetics and Molecular Biology 1 5%
Nursing and Health Professions 1 5%
Other 1 5%
Unknown 8 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 September 2014.
All research outputs
#19,942,887
of 25,371,288 outputs
Outputs from Respiratory Research
#2,511
of 3,062 outputs
Outputs of similar age
#172,466
of 250,094 outputs
Outputs of similar age from Respiratory Research
#40
of 47 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 250,094 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one is in the 4th percentile – i.e., 4% of its contemporaries scored the same or lower than it.