↓ Skip to main content

pIL6-TRAIL-engineered umbilical cord mesenchymal/stromal stem cells are highly cytotoxic for myeloma cells both in vitro and in vivo

Overview of attention for article published in Stem Cell Research & Therapy, September 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
pIL6-TRAIL-engineered umbilical cord mesenchymal/stromal stem cells are highly cytotoxic for myeloma cells both in vitro and in vivo
Published in
Stem Cell Research & Therapy, September 2017
DOI 10.1186/s13287-017-0655-6
Pubmed ID
Authors

Paola Cafforio, Luigi Viggiano, Francesco Mannavola, Eleonora Pellè, Concetta Caporusso, Eugenio Maiorano, Claudia Felici, Francesco Silvestris

Abstract

Mesenchymal/stromal stem cells (MSCs) are favorably regarded in anti-cancer cytotherapies for their spontaneous chemotaxis toward inflammatory and tumor environments associated with an intrinsic cytotoxicity against tumor cells. Placenta-derived or TRAIL-engineered adipose MSCs have been shown to exert anti-tumor activity in both in-vitro and in-vivo models of multiple myeloma (MM) while TRAIL-transduced umbilical cord (UC)-MSCs appear efficient inducers of apoptosis in a few solid tumors. However, apoptosis is not selective for cancer cells since specific TRAIL receptors are also expressed by a number of normal cells. To overcome this drawback, we propose to transduce UC-MSCs with a bicistronic vector including the TRAIL sequence under the control of IL-6 promoter (pIL6) whose transcriptional activation is promoted by the MM milieu. UC-MSCs were transduced with a bicistronic retroviral vector (pMIGR1) encoding for green fluorescent protein (GFP) and modified to include the pIL6 sequence upstream of the full-length human TRAIL cDNA. TRAIL expression after stimulation with U-266 cell conditioned medium, or IL-1α/IL-1β, was evaluated by flow cytometry, confocal microscopy, real-time PCR, western blot analysis, and ELISA. Apoptosis in MM cells was assayed by Annexin V staining and by caspase-8 activation. The cytotoxic effect of pIL6-TRAIL (+) -GFP (+) -UC-MSCs on MM growth was evaluated in SCID mice by bioluminescence and ex vivo by caspase-3 activation and X-ray imaging. Statistical analyses were performed by Student's t test, ANOVA, and logrank test for survival curves. pIL6-TRAIL (+) -GFP (+) -UC-MSCs significantly expressed TRAIL after stimulation by either conditioned medium or by IL-1α/IL-1β, and induced apoptosis in U-266 cells. Moreover, when systemically injected in SCID mice intratibially xenografted with U-266, those cells underwent within MM tibia lesions and significantly reduced the tumor burden by specific induction of apoptosis in MM cells as revealed by caspase-3 activation. Our tumor microenvironment-sensitive model of anti-MM cytotherapy is regulated by the axis pIL6/IL-1α/IL-1β and appears suitable for further preclinical investigation not only in myeloma bone disease in which UC-MSCs would even participate to bone healing as described, but also in other osteotropic tumors whose milieu is enriched of cytokines triggering the pIL6.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 24%
Student > Ph. D. Student 5 20%
Student > Bachelor 2 8%
Professor 2 8%
Other 1 4%
Other 2 8%
Unknown 7 28%
Readers by discipline Count As %
Medicine and Dentistry 7 28%
Biochemistry, Genetics and Molecular Biology 5 20%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Psychology 1 4%
Agricultural and Biological Sciences 1 4%
Other 2 8%
Unknown 8 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 October 2017.
All research outputs
#17,916,739
of 23,003,906 outputs
Outputs from Stem Cell Research & Therapy
#1,595
of 2,429 outputs
Outputs of similar age
#229,856
of 321,103 outputs
Outputs of similar age from Stem Cell Research & Therapy
#42
of 67 outputs
Altmetric has tracked 23,003,906 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,429 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,103 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 67 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.