↓ Skip to main content

The combination of oral quercetin supplementation and exercise prevents brain mitochondrial biogenesis

Overview of attention for article published in Genes & Nutrition, August 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The combination of oral quercetin supplementation and exercise prevents brain mitochondrial biogenesis
Published in
Genes & Nutrition, August 2014
DOI 10.1007/s12263-014-0420-8
Pubmed ID
Authors

Rafael Antonio Casuso, Emilio José Martínez-López, Fidel Hita-Contreras, Daniel Camiletti-Moiron, Rubén Martínez-Romero, Ana Cañuelo, Antonio Martínez-Amat

Abstract

The purpose of this study was to investigate whether the combination of oral quercetin (Q) supplementation and exercise prevents mitochondrial biogenesis. Four groups of Wistar rats were tested: quercetin-sedentary (Q-sedentary); quercetin-exercised (Q-exercised); no-quercetin-sedentary (NQ-sedentary); and no-quercetin-exercised (NQ-exercised). Treadmill exercise training took place 5 days a week for 6 weeks. Quercetin groups were supplemented with 25 mg/kg of quercetin throughout the experimental period. Sirtuin 1 (SIRT1), peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA levels and the activity of citrate synthase (CS) were measured in the brain. Redox status was also quantified by measuring the enzymatic activity of catalase (CAT) and superoxide dismutase (SOD) and protein carbonyls content (PCC). Q-Exercised (P < 0.001) and Q-sedentary (P = 0.042) groups increased PCC. In the Q-sedentary, there was an antioxidant enzymatic activity modulation for CAT (P < 0.001) and SOD (P < 0.01) but not in the Q-exercised. Q-sedentary showed a similar response to exercise in the brain by increasing CS activity in the brain (P < 0.01) and by activating the transcription of SIRT1 (P < 0.001) and PGC-1α (P = 0.03). These effects were hampered in the Q-exercised group. Quercetin is a pro-oxidant agent in the brain, but it modulates antioxidant activity in a sedentary condition. Quercetin supplementation during exercise compromises mitochondrial biogenesis induced separately by quercetin and exercise.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 2 6%
United States 1 3%
Spain 1 3%
Unknown 32 89%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 14%
Researcher 5 14%
Student > Doctoral Student 4 11%
Other 4 11%
Student > Master 3 8%
Other 6 17%
Unknown 9 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 17%
Medicine and Dentistry 5 14%
Sports and Recreations 4 11%
Pharmacology, Toxicology and Pharmaceutical Science 3 8%
Nursing and Health Professions 3 8%
Other 8 22%
Unknown 7 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 September 2014.
All research outputs
#14,658,791
of 22,764,165 outputs
Outputs from Genes & Nutrition
#214
of 388 outputs
Outputs of similar age
#124,802
of 230,127 outputs
Outputs of similar age from Genes & Nutrition
#6
of 13 outputs
Altmetric has tracked 22,764,165 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 388 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.2. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 230,127 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.