↓ Skip to main content

Molecular species delimitation of a symbiotic fig-pollinating wasp species complex reveals extreme deviation from reciprocal partner specificity

Overview of attention for article published in BMC Ecology and Evolution, September 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular species delimitation of a symbiotic fig-pollinating wasp species complex reveals extreme deviation from reciprocal partner specificity
Published in
BMC Ecology and Evolution, September 2014
DOI 10.1186/s12862-014-0189-9
Pubmed ID
Authors

Clive T Darwell, Sarah al-Beidh, James M Cook

Abstract

Symbiotic relationships have contributed to major evolutionary innovations, the maintenance of fundamental ecosystem functions, and the generation and maintenance of biodiversity. However, the exact nature of host/symbiont associations, which has important consequences for their dynamics, is often poorly known due to limited understanding of symbiont taxonomy and species diversity. Among classical symbioses, figs and their pollinating wasps constitute a highly diverse keystone resource in tropical forest and savannah environments. Historically, they were considered to exemplify extreme reciprocal partner specificity (one-to-one host-symbiont species relationships), but recent work has revealed several more complex cases. However, there is a striking lack of studies with the specific aims of assessing symbiont diversity and how this varies across the geographic range of the host. Here, we use molecular methods to investigate cryptic diversity in the pollinating wasps of a widespread Australian fig species. Standard barcoding genes and methods were not conclusive, but incorporation of phylogenetic analyses and a recently developed nuclear barcoding gene (ITS2), gave strong support for five pollinator species. Each pollinator species was most common in a different geographic region, emphasising the importance of wide geographic sampling to uncover diversity, and the scope for divergence in coevolutionary trajectories across the host plant range. In addition, most regions had multiple coexisting pollinators, raising the question of how they coexist in apparently similar or identical resource niches. Our study offers a striking example of extreme deviation from reciprocal partner specificity over the full geographical range of a fig-wasp system. It also suggests that superficially identical species may be able to co-exist in a mutualistic setting albeit at different frequencies in relation to their fig host's range. We show that comprehensive sampling and molecular taxonomic techniques may be required to uncover the true structure of cryptic biodiversity underpinning intimate ecological interactions.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 58 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 25%
Student > Bachelor 9 15%
Student > Master 8 14%
Researcher 5 8%
Professor 4 7%
Other 7 12%
Unknown 11 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 31 53%
Biochemistry, Genetics and Molecular Biology 6 10%
Environmental Science 6 10%
Unknown 16 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 September 2014.
All research outputs
#20,657,128
of 25,374,917 outputs
Outputs from BMC Ecology and Evolution
#3,267
of 3,714 outputs
Outputs of similar age
#190,045
of 260,160 outputs
Outputs of similar age from BMC Ecology and Evolution
#49
of 58 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 5th percentile – i.e., 5% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 260,160 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 58 others from the same source and published within six weeks on either side of this one. This one is in the 3rd percentile – i.e., 3% of its contemporaries scored the same or lower than it.