↓ Skip to main content

Epigenetic therapy of acute myeloid leukemia using 5-aza-2'-deoxycytidine (decitabine) in combination with inhibitors of histone methylation and deacetylation

Overview of attention for article published in Clinical Epigenetics, October 2014
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

twitter
6 X users
patent
2 patents

Citations

dimensions_citation
59 Dimensions

Readers on

mendeley
87 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Epigenetic therapy of acute myeloid leukemia using 5-aza-2'-deoxycytidine (decitabine) in combination with inhibitors of histone methylation and deacetylation
Published in
Clinical Epigenetics, October 2014
DOI 10.1186/1868-7083-6-19
Pubmed ID
Authors

Richard L Momparler, Sylvie Côté, Louise F Momparler, Youssef Idaghdour

Abstract

The silencing of tumor suppressor genes (TSGs) by aberrant DNA methylation occurs frequently in acute myeloid leukemia (AML). This epigenetic alteration can be reversed by 5-aza-2'-deoxcytidine (decitabine, 5-AZA-CdR). Although 5-AZA-CdR can induce complete remissions in patients with AML, most patients relapse. The effectiveness of this therapy may be limited by the inability of 5-AZA-CdR to reactivate all TSGs due to their silencing by other epigenetic mechanisms such as histone methylation or chromatin compaction. EZH2, a subunit of the polycomb repressive complex 2, catalyzes the methylation of histone H3 lysine 27 (H3K27) to H3K27me3. 3-Deazaneplanocin-A (DZNep), an inhibitor of methionine metabolism, can reactivate genes silenced by H3K27me3 by its inhibition of EZH2. In a previous report, we observed that 5-AZA-CdR, in combination with DZNep, shows synergistic antineoplastic action against AML cells. Gene silencing due to chromatin compaction is attributable to the action of histone deacetylases (HDAC). This mechanism of epigenetic gene silencing can be reversed by HDAC inhibitors such as trichostatin-A (TSA). Silent TSGs that cannot be reactivated by 5-AZA-CdR or DZNep have the potential to be reactivated by TSA. This provides a rationale for the use of HDAC inhibitors in combination with 5-AZA-CdR and DZNep to treat AML.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 87 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Indonesia 1 1%
Spain 1 1%
United States 1 1%
Belgium 1 1%
Unknown 83 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 25%
Researcher 17 20%
Student > Master 10 11%
Student > Postgraduate 6 7%
Student > Bachelor 6 7%
Other 10 11%
Unknown 16 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 28%
Biochemistry, Genetics and Molecular Biology 18 21%
Medicine and Dentistry 17 20%
Pharmacology, Toxicology and Pharmaceutical Science 5 6%
Chemistry 3 3%
Other 4 5%
Unknown 16 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 February 2023.
All research outputs
#3,664,738
of 25,378,284 outputs
Outputs from Clinical Epigenetics
#265
of 1,436 outputs
Outputs of similar age
#39,243
of 265,583 outputs
Outputs of similar age from Clinical Epigenetics
#1
of 10 outputs
Altmetric has tracked 25,378,284 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,436 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,583 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them