↓ Skip to main content

Transcriptome analyses reveal SR45 to be a neutral splicing regulator and a suppressor of innate immunity in Arabidopsis thaliana

Overview of attention for article published in BMC Genomics, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
57 Dimensions

Readers on

mendeley
58 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptome analyses reveal SR45 to be a neutral splicing regulator and a suppressor of innate immunity in Arabidopsis thaliana
Published in
BMC Genomics, October 2017
DOI 10.1186/s12864-017-4183-7
Pubmed ID
Authors

Xiao-Ning Zhang, Yifei Shi, Jordan J. Powers, Nikhil B. Gowda, Chong Zhang, Heba M. M. Ibrahim, Hannah B. Ball, Samuel L. Chen, Hua Lu, Stephen M. Mount

Abstract

Regulation of pre-mRNA splicing diversifies protein products and affects many biological processes. Arabidopsis thaliana Serine/Arginine-rich 45 (SR45), regulates pre-mRNA splicing by interacting with other regulatory proteins and spliceosomal subunits. Although SR45 has orthologs in diverse eukaryotes, including human RNPS1, the sr45-1 null mutant is viable. Narrow flower petals and reduced seed formation suggest that SR45 regulates genes involved in diverse processes, including reproduction. To understand how SR45 is involved in the regulation of reproductive processes, we studied mRNA from the wild-type and sr45-1 inflorescences using RNA-seq, and identified SR45-bound RNAs by immunoprecipitation. Using a variety of bioinformatics tools, we identified a total of 358 SR45 differentially regulated (SDR) genes, 542 SR45-dependent alternative splicing (SAS) events, and 1812 SR45-associated RNAs (SARs). There is little overlap between SDR genes and SAS genes, and neither set of genes is enriched for flower or seed development. However, transcripts from reproductive process genes are significantly overrepresented in SARs. In exploring the fate of SARs, we found that a total of 81 SARs are subject to alternative splicing, while 14 of them are known Nonsense-Mediated Decay (NMD) targets. Motifs related to GGNGG are enriched both in SARs and near different types of SAS events, suggesting that SR45 recognizes this motif directly. Genes involved in plant defense are significantly over-represented among genes whose expression is suppressed by SR45, and sr45-1 plants do indeed show enhanced immunity. We find that SR45 is a suppressor of innate immunity. We find that a single motif (GGNGG) is highly enriched in both RNAs bound by SR45 and in sequences near SR45- dependent alternative splicing events in inflorescence tissue. We find that the alternative splicing events regulated by SR45 are enriched for this motif whether the effect of SR45 is activation or repression of the particular event. Thus, our data suggests that SR45 acts to control splice site choice in a way that defies simple categorization as an activator or repressor of splicing.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 58 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 22%
Student > Ph. D. Student 11 19%
Student > Master 8 14%
Student > Bachelor 3 5%
Professor 3 5%
Other 10 17%
Unknown 10 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 28 48%
Biochemistry, Genetics and Molecular Biology 14 24%
Engineering 2 3%
Computer Science 1 2%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 2 3%
Unknown 10 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 May 2018.
All research outputs
#15,481,147
of 23,005,189 outputs
Outputs from BMC Genomics
#6,724
of 10,692 outputs
Outputs of similar age
#203,176
of 324,711 outputs
Outputs of similar age from BMC Genomics
#123
of 204 outputs
Altmetric has tracked 23,005,189 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,692 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,711 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 204 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.