↓ Skip to main content

Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model

Overview of attention for article published in Journal of Translational Medicine, October 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
76 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model
Published in
Journal of Translational Medicine, October 2017
DOI 10.1186/s12967-017-1304-7
Pubmed ID
Authors

Yu-An Huang, Zhu-Hong You, Xing Chen, Zhi-An Huang, Shanwen Zhang, Gui-Ying Yan

Abstract

Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe-disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treatment of various diseases. However, little effort has been made to predict microbial candidates for human complex diseases on a large scale. In this work, we developed a new computational model for predicting microbe-disease associations by combining two single recommendation methods. Based on the assumption that functionally similar microbes tend to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-based scoring method to compute association possibility of microbe-disease pairs. The promising prediction performance could be attributed to the use of hybrid approach based on two single recommendation methods as well as the introduction of Gaussian kernel-based similarity and symptom-based disease similarity. To evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed microbe-disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the similar disease clusters, and vice versa. Compared with other methods, the prediction results yielded by NGRHMDA demonstrate its effective prediction performance for microbe-disease associations. It is anticipated that NGRHMDA can be used as a useful tool to search the most potential microbial candidates for various diseases, and therefore boosts the medical knowledge and drug development. The codes and dataset of our work can be downloaded from https://github.com/yahuang1991/NGRHMDA .

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 35%
Researcher 4 11%
Other 3 8%
Student > Master 2 5%
Student > Bachelor 1 3%
Other 2 5%
Unknown 12 32%
Readers by discipline Count As %
Computer Science 10 27%
Agricultural and Biological Sciences 5 14%
Biochemistry, Genetics and Molecular Biology 3 8%
Engineering 2 5%
Medicine and Dentistry 2 5%
Other 3 8%
Unknown 12 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 June 2018.
All research outputs
#18,345,702
of 23,577,761 outputs
Outputs from Journal of Translational Medicine
#2,864
of 4,186 outputs
Outputs of similar age
#235,033
of 327,154 outputs
Outputs of similar age from Journal of Translational Medicine
#46
of 57 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,186 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,154 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 57 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.