↓ Skip to main content

Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties

Overview of attention for article published in Journal of Neuroinflammation, October 2017
Altmetric Badge

Citations

dimensions_citation
82 Dimensions

Readers on

mendeley
116 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties
Published in
Journal of Neuroinflammation, October 2017
DOI 10.1186/s12974-017-0978-3
Pubmed ID
Authors

Chittappen K. Prajeeth, Julius Kronisch, Reza Khorooshi, Benjamin Knier, Henrik Toft-Hansen, Viktoria Gudi, Stefan Floess, Jochen Huehn, Trevor Owens, Thomas Korn, Martin Stangel

Abstract

Autoreactive Th1 and Th17 cells are believed to mediate the pathology of multiple sclerosis in the central nervous system (CNS). Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of the neuroinflammation. Previously, we have shown that only Th1 but not Th17 effectors activate microglia. However, it is not clear which cells are targets of Th17 effectors in the CNS. To understand the effects driven by Th17 cells in the CNS, we induced experimental autoimmune encephalomyelitis in wild-type mice and CD4(+) T cell-specific integrin α4-deficient mice where trafficking of Th1 cells into the CNS was affected. We compared microglial and astrocyte response in the brain and spinal cord of these mice. We further treated astrocytes with supernatants from highly pure Th1 and Th17 cultures and assessed the messenger RNA expression of neurotrophic factors, cytokines and chemokines, using real-time PCR. Data obtained was analyzed using the Kruskal-Wallis test. We observed in α4-deficient mice weak microglial activation but comparable astrogliosis to that of wild-type mice in the regions of the brain populated with Th17 infiltrates, suggesting that Th17 cells target astrocytes and not microglia. In vitro, in response to supernatants from Th1 and Th17 cultures, astrocytes showed altered expression of neurotrophic factors, pro-inflammatory cytokines and chemokines. Furthermore, increased expression of chemokines in Th1- and Th17-treated astrocytes enhanced recruitment of microglia and transendothelial migration of Th17 cells in vitro. Our results demonstrate the delicate interaction between T cell subsets and glial cells and how they communicate to mediate their effects. Effectors of Th1 act on both microglia and astrocytes whereas Th17 effectors preferentially target astrocytes to promote neuroinflammation.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 116 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 116 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 16%
Student > Bachelor 16 14%
Researcher 11 9%
Student > Doctoral Student 10 9%
Student > Master 10 9%
Other 14 12%
Unknown 37 32%
Readers by discipline Count As %
Neuroscience 22 19%
Biochemistry, Genetics and Molecular Biology 18 16%
Immunology and Microbiology 11 9%
Agricultural and Biological Sciences 5 4%
Medicine and Dentistry 5 4%
Other 14 12%
Unknown 41 35%