↓ Skip to main content

In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response

Overview of attention for article published in BMC Plant Biology, October 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response
Published in
BMC Plant Biology, October 2017
DOI 10.1186/s12870-017-1118-z
Pubmed ID
Authors

Guan-Xing Chen, Shou-Min Zhen, Yan-Lin Liu, Xing Yan, Ming Zhang, Yue-Ming Yan

Abstract

Drought stress during grain development causes significant yield loss in cereal production. The phosphorylated modification of starch granule-binding proteins (SGBPs) is an important mechanism regulating wheat starch biosynthesis. In this study, we performed the first proteomics and phosphoproteomics analyses of SGBPs in elite Chinese bread wheat (Triticum aestivum L.) cultivar Jingdong 17 under well-watered and water-stress conditions. Water stress treatment caused significant reductions in spike grain numbers and weight, total starch and amylopectin content, and grain yield. Two-dimensional gel electrophoresis revealed that the quantity of SGBPs was reduced significantly by water-deficit treatment. Phosphoproteome characterization of SGBPs under water-deficit treatment demonstrated a reduced level of phosphorylation of main starch synthesis enzymes, particularly for granule-bound starch synthase (GBSS I), starch synthase II-a (SS II-a), and starch synthase III (SS III). Specifically, the Ser34 site of the GBSSI protein, the Tyr358 site of SS II-a, and the Ser837 site of SS III-a exhibited significant less phosphorylation under water-deficit treatment than well-watered treatment. Furthermore, the expression levels of several key genes related with starch biosynthesis detected by qRT-PCR were decreased significantly at 15 days post-anthesis under water-deficit treatment. Immunolocalization showed a clear movement of GBSS I from the periphery to the interior of starch granules during grain development, under both water-deficit and well-watered conditions. Our results demonstrated that the reduction in gene expression or transcription level, protein expression and phosphorylation levels of starch biosynthesis related enzymes under water-deficit conditions is responsible for the significant decrease in total starch content and grain yield.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 19%
Researcher 6 19%
Student > Doctoral Student 5 16%
Student > Bachelor 3 10%
Professor > Associate Professor 2 6%
Other 1 3%
Unknown 8 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 35%
Biochemistry, Genetics and Molecular Biology 5 16%
Engineering 3 10%
Computer Science 1 3%
Nursing and Health Professions 1 3%
Other 0 0%
Unknown 10 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 June 2018.
All research outputs
#18,574,814
of 23,006,268 outputs
Outputs from BMC Plant Biology
#2,123
of 3,282 outputs
Outputs of similar age
#250,993
of 327,882 outputs
Outputs of similar age from BMC Plant Biology
#41
of 66 outputs
Altmetric has tracked 23,006,268 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,282 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,882 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 66 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.