↓ Skip to main content

An optimized approach for annotation of large eukaryotic genomic sequences using genetic algorithm

Overview of attention for article published in BMC Bioinformatics, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An optimized approach for annotation of large eukaryotic genomic sequences using genetic algorithm
Published in
BMC Bioinformatics, October 2017
DOI 10.1186/s12859-017-1874-7
Pubmed ID
Authors

Biswanath Chowdhury, Arnav Garai, Gautam Garai

Abstract

Detection of important functional and/or structural elements and identification of their positions in a large eukaryotic genomic sequence are an active research area. Gene is an important functional and structural unit of DNA. The computation of gene prediction is, therefore, very essential for detailed genome annotation. In this paper, we propose a new gene prediction technique based on Genetic Algorithm (GA) to determine the optimal positions of exons of a gene in a chromosome or genome. The correct identification of the coding and non-coding regions is difficult and computationally demanding. The proposed genetic-based method, named Gene Prediction with Genetic Algorithm (GPGA), reduces this problem by searching only one exon at a time instead of all exons along with its introns. This representation carries a significant advantage in that it breaks the entire gene-finding problem into a number of smaller sub-problems, thereby reducing the computational complexity. We tested the performance of the GPGA with existing benchmark datasets and compared the results with well-known and relevant techniques. The comparison shows the better or comparable performance of the proposed method. We also used GPGA for annotating the human chromosome 21 (HS21) using cross-species comparisons with the mouse orthologs. It was noted that the GPGA predicted true genes with better accuracy than other well-known approaches.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 27%
Student > Master 6 23%
Student > Ph. D. Student 4 15%
Researcher 2 8%
Other 1 4%
Other 2 8%
Unknown 4 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 31%
Biochemistry, Genetics and Molecular Biology 7 27%
Computer Science 3 12%
Chemistry 2 8%
Business, Management and Accounting 1 4%
Other 1 4%
Unknown 4 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 January 2018.
All research outputs
#16,418,057
of 24,953,268 outputs
Outputs from BMC Bioinformatics
#5,267
of 7,616 outputs
Outputs of similar age
#201,393
of 333,943 outputs
Outputs of similar age from BMC Bioinformatics
#77
of 134 outputs
Altmetric has tracked 24,953,268 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,616 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,943 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 134 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.