↓ Skip to main content

Profiling, clinicopathological correlation and functional validation of specific long non-coding RNAs for hepatocellular carcinoma

Overview of attention for article published in Molecular Cancer, October 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Profiling, clinicopathological correlation and functional validation of specific long non-coding RNAs for hepatocellular carcinoma
Published in
Molecular Cancer, October 2017
DOI 10.1186/s12943-017-0733-5
Pubmed ID
Authors

Jian Yao, Lingjiao Wu, Xiaohua Meng, Huanxia Yang, Shujun Ni, Qiangfeng Wang, Jiawei Zhou, Qiong Zhang, Kunkai Su, Li Shao, Qingyi Cao, Mingding Li, Fusheng Wu, Lanjuan Li

Abstract

Hepatocellular carcinoma (HCC) is one of the most prevalent and aggressive malignancies worldwide. Studies seeking to advance the overall understanding of lncRNA profiling in HCC remain rare. The transcriptomic profiling of 12 HCC tissues and paired adjacent normal tissues was determined using high-throughput RNA sequencing. Fifty differentially expressed mRNAs (DEGs) and lncRNAs (DELs) were validated in 21 paired HCC tissues via quantitative real-time PCR. The correlation between the expression of DELs and various clinicopathological characteristics was analyzed using Student's t-test or linear regression. Co-expression networks between DEGs and DELs were constructed through Pearson correlation co-efficient and enrichment analysis. Validation of DELs' functions including proliferation and migration was performed via loss-of-function RNAi assays. In this study, we identified 439 DEGs and 214 DELs, respectively, in HCC. Furthermore, we revealed that multiple DELs, including NONHSAT003823, NONHSAT056213, NONHSAT015386 and especially NONHSAT122051, were remarkably correlated with tumor cell differentiation, portal vein tumor thrombosis, and serum or tissue alpha fetoprotein levels. In addition, the co-expression network analysis between DEGs and DELs showed that DELs were involved with metabolic, cell cycle, chemical carcinogenesis, and complement and coagulation cascade-related pathways. The silencing of the endogenous level of NONHSAT122051 or NONHSAT003826 could significantly attenuate the mobility of both SK-HEP-1 and SMMC-7721 HCC cells. These findings not only add knowledge to the understanding of genome-wide transcriptional evaluation of HCC but also provide promising targets for the future diagnosis and treatment of HCC.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 18%
Researcher 2 18%
Other 1 9%
Student > Ph. D. Student 1 9%
Student > Doctoral Student 1 9%
Other 2 18%
Unknown 2 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 55%
Nursing and Health Professions 1 9%
Medicine and Dentistry 1 9%
Unknown 3 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 October 2017.
All research outputs
#19,011,832
of 23,567,572 outputs
Outputs from Molecular Cancer
#1,354
of 1,782 outputs
Outputs of similar age
#252,703
of 328,947 outputs
Outputs of similar age from Molecular Cancer
#13
of 21 outputs
Altmetric has tracked 23,567,572 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,782 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,947 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.