↓ Skip to main content

Genomic prediction based on data from three layer lines: a comparison between linear methods

Overview of attention for article published in Genetics Selection Evolution, October 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genomic prediction based on data from three layer lines: a comparison between linear methods
Published in
Genetics Selection Evolution, October 2014
DOI 10.1186/s12711-014-0057-5
Pubmed ID
Authors

Mario PL Calus, Heyun Huang, Addie Vereijken, Jeroen Visscher, Jan ten Napel, Jack J Windig

Abstract

The prediction accuracy of several linear genomic prediction models, which have previously been used for within-line genomic prediction, was evaluated for multi-line genomic prediction. Compared to a conventional BLUP (best linear unbiased prediction) model using pedigree data, we evaluated the following genomic prediction models: genome-enabled BLUP (GBLUP), ridge regression BLUP (RRBLUP), principal component analysis followed by ridge regression (RRPCA), BayesC and Bayesian stochastic search variable selection. Prediction accuracy was measured as the correlation between predicted breeding values and observed phenotypes divided by the square root of the heritability. The data used concerned laying hens with phenotypes for number of eggs in the first production period and known genotypes. The hens were from two closely-related brown layer lines (B1 and B2), and a third distantly-related white layer line (W1). Lines had 1004 to 1023 training animals and 238 to 240 validation animals. Training datasets consisted of animals of either single lines, or a combination of two or all three lines, and had 30 508 to 45 974 segregating single nucleotide polymorphisms. Genomic prediction models yielded 0.13 to 0.16 higher accuracies than pedigree-based BLUP. When excluding the line itself from the training dataset, genomic predictions were generally inaccurate. Use of multiple lines marginally improved prediction accuracy for B2 but did not affect or slightly decreased prediction accuracy for B1 and W1. Differences between models were generally small except for RRPCA which gave considerably higher accuracies for B2. Correlations between genomic predictions from different methods were higher than 0.96 for W1 and higher than 0.88 for B1 and B2. The greater differences between methods for B1 and B2 were probably due to the lower accuracy of predictions for B1 (~0.45) and B2 (~0.40) compared to W1 (~0.76). Multi-line genomic prediction did not affect or slightly improved prediction accuracy for closely-related lines. For distantly-related lines, multi-line genomic prediction yielded similar or slightly lower accuracies than single-line genomic prediction. Bayesian variable selection and GBLUP generally gave similar accuracies. Overall, RRPCA yielded the greatest accuracies for two lines, suggesting that using PCA helps to alleviate the "n ≪ p" problem in genomic prediction.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Colombia 1 2%
Poland 1 2%
Unknown 38 93%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 34%
Student > Master 7 17%
Student > Ph. D. Student 5 12%
Student > Doctoral Student 2 5%
Student > Postgraduate 2 5%
Other 3 7%
Unknown 8 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 28 68%
Biochemistry, Genetics and Molecular Biology 5 12%
Unknown 8 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 October 2015.
All research outputs
#16,720,137
of 25,371,288 outputs
Outputs from Genetics Selection Evolution
#523
of 822 outputs
Outputs of similar age
#151,794
of 265,635 outputs
Outputs of similar age from Genetics Selection Evolution
#4
of 16 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 822 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,635 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.