↓ Skip to main content

Impairment of NADH dehydrogenase and regulation of anaerobic metabolism by the small RNA RyhB and NadE for improved biohydrogen production in Enterobacter aerogenes

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impairment of NADH dehydrogenase and regulation of anaerobic metabolism by the small RNA RyhB and NadE for improved biohydrogen production in Enterobacter aerogenes
Published in
Biotechnology for Biofuels and Bioproducts, October 2017
DOI 10.1186/s13068-017-0938-2
Pubmed ID
Authors

Yan Wu, Yaqiao Hao, Xuan Wei, Qi Shen, Xuanwei Ding, Liyan Wang, Hongxin Zhao, Yuan Lu

Abstract

Enterobacter aerogenes is a facultative anaerobe and is one of the most widely studied bacterial strains because of its ability to use a variety of substrates, to produce hydrogen at a high rate, and its high growth rate during dark fermentation. However, the rate of hydrogen production has not been optimized. In this present study, three strategies to improve hydrogen production in E. aerogenes, namely the disruption of nuoCDE, overexpression of the small RNA RyhB and of NadE to regulate global anaerobic metabolism, and the redistribution of metabolic flux. The goal of this study was to clarify the effect of nuoCDE, RyhB, and NadE on hydrogen production and how the perturbation of NADH influences the yield of hydrogen gas from E. aerogenes. NADH dehydrogenase activity was impaired by knocking out nuoCD or nuoCDE in E. aerogenes IAM1183 using the CRISPR-Cas9 system to explore the consequent effect on hydrogen production. The hydrogen yields from IAM1183-CD(∆nuoC/∆nuoD) and IAM1183-CDE (∆nuoC/∆nuoD/∆nuoE) increased, respectively, by 24.5 and 45.6% in batch culture (100 mL serum bottles). The hydrogen produced via the NADH pathway increased significantly in IAM1183-CDE, suggesting that nuoE plays an important role in regulating NADH concentration in E. aerogenes. Batch-cultivating experiments showed that by the overexpression of NadE (N), the hydrogen yields of IAM1183/N, IAM1183-CD/N, and IAM1183-CDE/N increased 1.06-, 1.35-, and 1.55-folds, respectively, compared with IAM1183. Particularly worth mentioning is that the strain IAM118-CDE/N reached 2.28 mol in H2 yield, per mole of glucose consumed. IAN1183/R, IAM1183-CD/R, and IAM1183-CDE/R showed increasing H2 yields in batch culture. Metabolic flux analysis indicated that increased expression of RyhB led to a significant shift in metabolic patterns. We further investigated IAM1183-CDE/N, which had the best hydrogen-producing traits, as a potential candidate for industry applications using a 5-L fermenter; hydrogen production reached up to 1.95 times greater than that measured for IAM1183. Knockout of nuoCD or nuoCDE and the overexpression of nadE in E. aerogenes resulted in a redistribution of metabolic flux and improved the hydrogen yield. Overexpression of RyhB had an significant change on the hydrogen production via NADH pathway. A combination of strategies would be a novel approach for developing a more economic and efficient bioprocess for hydrogen production in E. aerogenes. Finally, the latest CRISPR-Cas9 technology was successful for editing genes in E. aerogenes to develop our engineered strain for hydrogen production.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 20%
Other 5 13%
Student > Doctoral Student 4 10%
Researcher 4 10%
Student > Postgraduate 2 5%
Other 6 15%
Unknown 11 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 18%
Agricultural and Biological Sciences 5 13%
Immunology and Microbiology 3 8%
Environmental Science 3 8%
Engineering 3 8%
Other 7 18%
Unknown 12 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 November 2017.
All research outputs
#16,051,091
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#882
of 1,578 outputs
Outputs of similar age
#193,287
of 339,743 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#19
of 42 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,743 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.