↓ Skip to main content

CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli

Overview of attention for article published in Microbial Cell Factories, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
67 Dimensions

Readers on

mendeley
144 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli
Published in
Microbial Cell Factories, November 2017
DOI 10.1186/s12934-017-0802-x
Pubmed ID
Authors

Seong Keun Kim, Wonjae Seong, Gui Hwan Han, Dae-Hee Lee, Seung-Goo Lee

Abstract

Multiplex control of metabolic pathway genes is essential for maximizing product titers and conversion yields of fuels, chemicals, and pharmaceuticals in metabolic engineering. To achieve this goal, artificial transcriptional regulators, such as clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi), have been developed to specifically repress genes of interest. In this study, we deployed a tunable CRISPRi system for multiplex repression of competing pathway genes and, thus, directed carbon flux toward production of molecules of interest in Escherichia coli. The tunable CRISPRi system with an array of sgRNAs successfully repressed four endogenous genes (pta, frdA, ldhA, and adhE) individually and in double, triple, or quadruple combination that are involved in the formation of byproducts (acetate, succinate, lactate, and ethanol) and the consumption of NADH in E. coli. Single-target CRISPRi effectively reduced the amount of each byproduct and, interestingly, pta repression also decreased ethanol production (41%), whereas ldhA repression increased ethanol production (197%). CRISPRi-mediated multiplex repression of competing pathway genes also resulted in simultaneous reductions of acetate, succinate, lactate, and ethanol production in E. coli. Among 15 conditions repressing byproduct-formation genes, we chose the quadruple-target CRISPRi condition to produce n-butanol in E. coli as a case study. When heterologous n-butanol-pathway enzymes were introduced into E. coli simultaneously repressing the expression of the pta, frdA, ldhA, and adhE genes via CRISPRi, n-butanol yield and productivity increased up to 5.4- and 3.2-fold, respectively. We demonstrated the tunable CRISPRi system to be a robust platform for multiplex modulation of endogenous gene expression that can be used to enhance biosynthetic pathway productivity, with n-butanol as the test case. CRISPRi applications potentially enable the development of microbial "smart cell" factories capable of producing other industrially valuable products.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 144 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 144 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 34 24%
Researcher 18 13%
Student > Master 16 11%
Student > Bachelor 11 8%
Other 9 6%
Other 19 13%
Unknown 37 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 63 44%
Agricultural and Biological Sciences 22 15%
Engineering 9 6%
Chemical Engineering 2 1%
Immunology and Microbiology 2 1%
Other 7 5%
Unknown 39 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 November 2017.
All research outputs
#14,367,260
of 23,007,053 outputs
Outputs from Microbial Cell Factories
#882
of 1,612 outputs
Outputs of similar age
#182,782
of 329,030 outputs
Outputs of similar age from Microbial Cell Factories
#15
of 46 outputs
Altmetric has tracked 23,007,053 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,612 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,030 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 46 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.